Skip to content

Latest commit

 

History

History
102 lines (77 loc) · 6.77 KB

release_notes_cn.md

File metadata and controls

102 lines (77 loc) · 6.77 KB

简体中文 | English

Release Notes

  • 2020.02.26

    v2.0

    • 全新发布2.0版本,全面升级至动态图,支持20+分割模型,4个骨干网络,5个数据集,9种Loss:
      • 分割模型:ANN、BiSeNetV2、DANet、DeeplabV3、DeeplabV3+、FCN、FastSCNN、Gated-scnn、GCNet、HarDNet、OCRNet、PSPNet、UNet、UNet++、U2Net、Attention UNet、Decoupled SegNet、EMANet、DNLNet、ISANet
      • 骨干网络:ResNet, HRNet, MobileNetV3, Xception
      • 数据集:Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
      • Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss、OhemCrossEntropyLoss、RelaxBoundaryLoss、OhemEdgeAttentionLoss、Lovasz Hinge Loss、Lovasz Softmax Loss
    • 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 50+
    • 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。
    • 支持XPU模型训练,包括DeepLabv3、HRNet、UNet。
    • 开源了基于Hierarchical Multi-Scale Attention结构的语义分割模型,在Cityscapes验证集上达到87% mIoU。
    • 动态图模式支持模型在线量化、剪枝等模型压缩功能。
    • 动态图下支持模型动转静,实现高性能部署。
  • 2020.12.18

    v2.0.0-rc

    • 全新发布2.0-rc版本,全面升级至动态图,支持15+分割模型,4个骨干网络,3个数据集,4种Loss:
      • 分割模型:ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U2-Net, Attention UNet
      • 骨干网络:ResNet, HRNet, MobileNetV3, Xception
      • 数据集:Cityscapes, ADE20K, Pascal VOC
      • Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss
    • 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 40+。
    • 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。
  • 2020.12.02

    v0.8.0

    • 增加多尺度评估/翻转评估/滑动窗口评估等功能。
    • 支持多卡GPU并行评估,提供了高效的指标计算功能。
    • 增加Pascal VOC 2012数据集。
    • 新增在Pascal VOC 2012数据集上的高精度预训练模型,详见模型库
    • 支持对PNG格式的伪彩色图片进行预测可视化。
  • 2020.10.28

    v0.7.0

    • 全面支持Paddle2.0-rc动态图模式,推出PaddleSeg动态图体验版

    • 发布大量动态图模型,支持11个分割模型,4个骨干网络,3个数据集:

      • 分割模型:ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, GCNet, OCRNet, PSPNet, UNet
      • 骨干网络:ResNet, HRNet, MobileNetV3, Xception
      • 数据集:Cityscapes, ADE20K, Pascal VOC
    • 提供高精度骨干网络预训练模型以及基于Cityscapes数据集的语义分割预训练模型。Cityscapes精度超过82%

  • 2020.08.31

    v0.6.0

    • 丰富Deeplabv3p网络结构,新增ResNet-vd、MobileNetv3两种backbone,满足高性能与高精度场景,并提供基于Cityscapes和ImageNet的预训练模型4个。
    • 新增高精度分割模型OCRNet,支持以HRNet作为backbone,提供基于Cityscapes的预训练模型,mIoU超过80%。
    • 新增proposal free的实例分割模型Spatial Embedding,性能与精度均超越MaskRCNN。提供了基于kitti的预训练模型。
  • 2020.05.12

    v0.5.0

    • 全面升级HumanSeg人像分割模型,新增超轻量级人像分割模型HumanSeg-lite支持移动端实时人像分割处理,并提供基于光流的视频分割后处理提升分割流畅性。
    • 新增气象遥感分割方案,支持积雪识别、云检测等气象遥感场景。
    • 新增Lovasz Loss,解决数据类别不均衡问题。
    • 使用VisualDL 2.0作为训练可视化工具
  • 2020.02.25

    v0.4.0

    • 新增适用于实时场景且不需要预训练模型的分割网络Fast-SCNN,提供基于Cityscapes的预训练模型1个
    • 新增LaneNet车道线检测网络,提供预训练模型一个
    • 新增基于PaddleSlim的分割库压缩策略(量化, 蒸馏, 剪枝, 搜索)
  • 2019.12.15

    v0.3.0

    • 新增HRNet分割网络,提供基于cityscapes和ImageNet的预训练模型8个
    • 支持使用伪彩色标签进行训练/评估/预测,提升训练体验,并提供将灰度标注图转为伪彩色标注图的脚本
    • 新增学习率warmup功能,支持与不同的学习率Decay策略配合使用
    • 新增图像归一化操作的GPU化实现,进一步提升预测速度。
    • 新增Python部署方案,更低成本完成工业级部署。
    • 新增Paddle-Lite移动端部署方案,支持人像分割模型的移动端部署。
    • 新增不同分割模型的预测性能数据Benchmark, 便于开发者提供模型选型性能参考。
  • 2019.11.04

    v0.2.0

  • 2019.09.10

    v0.1.0

    • PaddleSeg分割库初始版本发布,包含DeepLabv3+, U-Net, ICNet三类分割模型, 其中DeepLabv3+支持Xception, MobileNet v2两种可调节的骨干网络。
    • CVPR19 LIP人体部件分割比赛冠军预测模型发布ACE2P
    • 预置基于DeepLabv3+网络的人像分割车道线分割预测模型发布。