forked from facebookresearch/Detectron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_spatial_narrow_as_op.py
91 lines (74 loc) · 3.33 KB
/
test_spatial_narrow_as_op.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import unittest
from caffe2.proto import caffe2_pb2
from caffe2.python import core
from caffe2.python import gradient_checker
from caffe2.python import workspace
import detectron.utils.c2 as c2_utils
import detectron.utils.logging as logging_utils
class SpatialNarrowAsOpTest(unittest.TestCase):
def _run_test(self, A, B, check_grad=False):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C'])
workspace.FeedBlob('A', A)
workspace.FeedBlob('B', B)
workspace.RunOperatorOnce(op)
C = workspace.FetchBlob('C')
if check_grad:
gc = gradient_checker.GradientChecker(
stepsize=0.005,
threshold=0.005,
device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
)
res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0])
self.assertTrue(res, 'Grad check failed')
dims = C.shape
C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]]
np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
def test_small_forward_and_gradient(self):
A = np.random.randn(2, 3, 5, 7).astype(np.float32)
B = np.random.randn(2, 3, 2, 2).astype(np.float32)
self._run_test(A, B, check_grad=True)
A = np.random.randn(2, 3, 5, 7).astype(np.float32)
B = np.random.randn(2, 3, 5).astype(np.float32)
self._run_test(A, B, check_grad=True)
def test_large_forward(self):
A = np.random.randn(2, 256, 42, 100).astype(np.float32)
B = np.random.randn(2, 256, 35, 87).astype(np.float32)
self._run_test(A, B)
A = np.random.randn(2, 256, 42, 87).astype(np.float32)
B = np.random.randn(2, 256, 35, 87).astype(np.float32)
self._run_test(A, B)
def test_size_exceptions(self):
A = np.random.randn(2, 256, 42, 86).astype(np.float32)
B = np.random.randn(2, 256, 35, 87).astype(np.float32)
with self.assertRaises(RuntimeError):
self._run_test(A, B)
A = np.random.randn(2, 255, 42, 88).astype(np.float32)
B = np.random.randn(2, 256, 35, 87).astype(np.float32)
with self.assertRaises(RuntimeError):
self._run_test(A, B)
if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
c2_utils.import_detectron_ops()
assert 'SpatialNarrowAs' in workspace.RegisteredOperators()
logging_utils.setup_logging(__name__)
unittest.main()