-
Notifications
You must be signed in to change notification settings - Fork 0
/
Mechanicus_LASER_DOT_TRACKING_BETA copy 5.py
316 lines (277 loc) · 9.84 KB
/
Mechanicus_LASER_DOT_TRACKING_BETA copy 5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import pygame
import cv2
import numpy as np
import serial
# Initialize Pygame
pygame.init()
# Constants
WINDOW_SIZE = (480, 480)
VIDEO_SIZE = (480, 480)
# Colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
BLUE = (45, 126, 255)
# Create Pygame window
screen = pygame.display.set_mode(WINDOW_SIZE)
pygame.display.set_caption("Green Dot Tracker")
# Initialize variables
green_x, green_y = None, None
laser_x, laser_y = WINDOW_SIZE[0] // 2, WINDOW_SIZE[1] // 2 # Initial laser position
cnc_rect = pygame.Rect(laser_x - 5, laser_y - 5, 25, 25)
cnc_speed = 1.7 # Adjust the speed as needed
# Initialize the serial connection
ser = serial.Serial('COM4', 115200) # Change 'COM4' to the appropriate COM port and baud rate
# Open the webcam
# Initialize the MIDI output port
cap = cv2.VideoCapture(1)
# Pygame clock for controlling frame rate
clock = pygame.time.Clock()
# Function to calculate the distance between two points
def distance(point1, point2):
return np.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
# Initialize a variable to keep track of whether the green point is currently detected
green_detected = False
red_detected = False
# Main loop
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# Process the video frame and detect the green and red points
ret, frame = cap.read()
if ret:
frame = frame[:480, :480]
frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)
frame = cv2.flip(frame, 1)
frame = cv2.resize(frame, VIDEO_SIZE)
hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Detection of the green point (similar to your existing code)
lower_green = np.array([35, 70, 70])
upper_green = np.array([90, 255, 255])
mask_green = cv2.inRange(hsv_frame, lower_green, upper_green)
contours_green, _ = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours_green:
largest_contour_green = max(contours_green, key=cv2.contourArea)
moments_green = cv2.moments(largest_contour_green)
if moments_green["m00"] != 0:
green_x = int(moments_green["m10"] / moments_green["m00"])
green_y = int(moments_green["m01"] / moments_green["m00"])
green_detected = True
ser.write(b'M3 S25\n') # Send the M3 command over serial
else:
green_x, green_y = None, None
green_detected = False
ser.write(b'M5 S0\n') # Send the M3 command over serial
else:
green_x, green_y = None, None
green_detected = False
ser.write(b'M5 S0\n') # Send the M3 command over serial
# Detection of the red point
lower_red = np.array([0, 150, 150])
upper_red = np.array([10, 255, 255])
mask_red = cv2.inRange(hsv_frame, lower_red, upper_red)
contours_red, _ = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours_red:
# Add the M3 command to turn on the laser
largest_contour_red = max(contours_red, key=cv2.contourArea)
moments_red = cv2.moments(largest_contour_red)
if moments_red["m00"] != 0:
red_x = int(moments_red["m10"] / moments_red["m00"])
red_y = int(moments_red["m01"] / moments_red["m00"])
red_detected = True
#ser.write(b'M3 S500\n') # Send the M3 command over serial
else:
red_x, red_y = None, None
red_detected = False
#ser.write(b'M5 S0\n')
else:
# Add the M5 command to turn off the laser when red point is not detected
#ser.write(b'M5\n') # Send the M5 command over serial
red_x, red_y = None, None
red_detected = False
# Clear the screen
#screen.fill(BLACK)
# Draw the video frame as the background
frame = cv2.rotate(frame, cv2.ROTATE_90_COUNTERCLOCKWISE) # Rotate 90 degrees clockwise
frame = cv2.flip(frame, 0) # Flip vertically (mirror vertically)
frame = cv2.resize(frame, VIDEO_SIZE)
screen.blit(pygame.surfarray.make_surface(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)), (0, 0))
# Draw the green dot
if green_x is not None and green_y is not None:
# Calculate the absolute coordinates within the window
x_abs = laser_x + (green_x - (VIDEO_SIZE[0] / 2))
y_abs = laser_y + (green_y - (VIDEO_SIZE[1] / 2))
# Calculate the distance between the CNC rectangle and the green dot
dist = distance((cnc_rect.centerx, cnc_rect.centery), (x_abs, y_abs))
if dist > 0:
# Calculate the unit vector towards the green dot
dx = (x_abs - cnc_rect.centerx) / dist
dy = (y_abs - cnc_rect.centery) / dist
# Move the CNC rectangle towards the green dot
cnc_rect.move_ip(dx * cnc_speed, dy * cnc_speed)
# Ensure the CNC rectangle stays within the window
cnc_rect.left = max(0, min(cnc_rect.left, WINDOW_SIZE[0] - cnc_rect.width))
cnc_rect.top = max(0, min(cnc_rect.top, WINDOW_SIZE[1] - cnc_rect.height))
if dist <= 60:
# Stop the CNC rectangle's movement
cnc_speed = 0 # Set the speed to zero
else:
# Reset the CNC speed when there's no green dot detected
cnc_speed = 3 # Adjust the speed as needed
#LASER HEAD POSITION CONTROL
realspeed= cnc_speed * 7000
XG= cnc_rect.centerx
YG=cnc_rect.centery
# Format G-code-like line
gcode_line = f"G1 X{YG} Y{XG} F{realspeed}\n"
print (gcode_line)
# Send the G-code-like line over serial
ser.write(gcode_line.encode()) # Send the data over serial
# Draw the blue rectangle (CNC)
pygame.draw.rect(screen, BLUE, cnc_rect)
# Draw the green dot in red
pygame.draw.circle(screen, RED, (int(x_abs), int(y_abs)), 25)
# Update the display
pygame.display.flip()
# Limit the frame rate
clock.tick(60)
# Release the webcam
cap.release()
ser.close()
# Close the MIDI output port when the program is done
pygame.quit()
gm_instruments = {
0: "Acoustic Grand Piano",
1: "Bright Acoustic Piano",
2: "Electric Grand Piano",
3: "Honky-tonk Piano",
4: "Electric Piano 1",
5: "Electric Piano 2",
6: "Harpsichord",
7: "Clavinet",
8: "Celesta",
9: "Glockenspiel",
10: "Music Box",
11: "Vibraphone",
12: "Marimba",
13: "Xylophone",
14: "Tubular Bells",
15: "Dulcimer",
16: "Drawbar Organ",
17: "Percussive Organ",
18: "Rock Organ",
19: "Church Organ",
20: "Reed Organ",
21: "Accordion",
22: "Harmonica",
23: "Tango Accordion",
24: "Acoustic Guitar (nylon)",
25: "Acoustic Guitar (steel)",
26: "Electric Guitar (jazz)",
27: "Electric Guitar (clean)",
28: "Electric Guitar (muted)",
29: "Overdriven Guitar",
30: "Distortion Guitar",
31: "Guitar harmonics",
32: "Acoustic Bass",
33: "Electric Bass (finger)",
34: "Electric Bass (pick)",
35: "Fretless Bass",
36: "Slap Bass 1",
37: "Slap Bass 2",
38: "Synth Bass 1",
39: "Synth Bass 2",
40: "Violin",
41: "Viola",
42: "Cello",
43: "Contrabass",
44: "Tremolo Strings",
45: "Pizzicato Strings",
46: "Orchestral Harp",
47: "Timpani",
48: "String Ensemble 1",
49: "String Ensemble 2",
50: "SynthStrings 1",
51: "SynthStrings 2",
52: "Choir Aahs",
53: "Voice Oohs",
54: "Synth Voice",
55: "Orchestra Hit",
56: "Trumpet",
57: "Trombone",
58: "Tuba",
59: "Muted Trumpet",
60: "French Horn",
61: "Brass Section",
62: "SynthBrass 1",
63: "SynthBrass 2",
64: "Soprano Sax",
65: "Alto Sax",
66: "Tenor Sax",
67: "Baritone Sax",
68: "Oboe",
69: "English Horn",
70: "Bassoon",
71: "Clarinet",
72: "Piccolo",
73: "Flute",
74: "Recorder",
75: "Pan Flute",
76: "Blown Bottle",
77: "Shakuhachi",
78: "Whistle",
79: "Ocarina",
80: "Lead 1 (square)",
81: "Lead 2 (sawtooth)",
82: "Lead 3 (calliope)",
83: "Lead 4 (chiff)",
84: "Lead 5 (charang)",
85: "Lead 6 (voice)",
86: "Lead 7 (fifths)",
87: "Lead 8 (bass + lead)",
88: "Pad 1 (new age)",
89: "Pad 2 (warm)",
90: "Pad 3 (polysynth)",
91: "Pad 4 (choir)",
92: "Pad 5 (bowed)",
93: "Pad 6 (metallic)",
94: "Pad 7 (halo)",
95: "Pad 8 (sweep)",
96: "FX 1 (rain)",
97: "FX 2 (soundtrack)",
98: "FX 3 (crystal)",
99: "FX 4 (atmosphere)",
100: "FX 5 (brightness)",
101: "FX 6 (goblins)",
102: "FX 7 (echoes)",
103: "FX 8 (sci-fi)",
104: "Sitar",
105: "Banjo",
106: "Shamisen",
107: "Koto",
108: "Kalimba",
109: "Bagpipe",
110: "Fiddle",
111: "Shanai",
112: "Tinkle Bell",
113: "Agogo",
114: "Steel Drums",
115: "Woodblock",
116: "Taiko Drum",
117: "Melodic Tom",
118: "Synth Drum",
119: "Reverse Cymbal",
120: "Guitar Fret Noise",
121: "Breath Noise",
122: "Seashore",
123: "Bird Tweet",
124: "Telephone Ring",
125: "Helicopter",
126: "Applause",
127: "Gunshot"
}
# Print the list of GM instruments and their numbers
for number, name in gm_instruments.items():
print(f"Instrument {number}: {name}")