All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.
v1.1.0rc4 - 2020-08-21
- Added regression tests for training configs that run on a scheduled workflow.
- Added a test for the pretrained sentiment analysis model.
v1.1.0rc3 - 2020-08-12
- Fixed
GraphParser.get_metrics
so that it expects a dict fromF1Measure.get_metric
. CopyNet
andSimpleSeq2Seq
models now work with AMP.- Made the SST reader a little more strict in the kinds of input it accepts.
v1.1.0rc2 - 2020-07-31
- Updated to PyTorch 1.6.
- Updated the RoBERTa SST config to make proper use of the CLS token
- Updated RoBERTa SNLI and MNLI pretrained models for latest
transformers
version
- Added BART model
- Added
ModelCard
and related classes. Added model cards for all the pretrained models. - Added a field
registered_predictor_name
toModelCard
. - Added a method
load_predictor
toallennlp_models.pretrained
. - Added support to multi-layer decoder in simple seq2seq model.
v1.1.0rc1 - 2020-07-14
- Updated the BERT SRL model to be compatible with the new huggingface tokenizers.
CopyNetSeq2Seq
model now works with pretrained transformers.- A bug with
NextTokenLM
that caused simple gradient interpreters to fail. - A bug in
training_config
ofqanet
andbimpm
that used the old version ofregularizer
andinitializer
. - The fine-grained NER transformer model did not survive an upgrade of the transformers library, but it is now fixed.
- Fixed many minor formatting issues in docstrings. Docs are now published at https://docs.allennlp.org/models/.
CopyNetDatasetReader
no longer automatically addsSTART_TOKEN
andEND_TOKEN
to the tokenized source. If you want these in the tokenized source, it's up to the source tokenizer.
- Added two models for fine-grained NER
- Added a category for multiple choice models, including a few reference implementations
- Implemented manual distributed sharding for SNLI dataset reader.
v1.0.0 - 2020-06-16
No additional note-worthy changes since rc6.
v1.0.0rc6 - 2020-06-11
- Removed deprecated
"simple_seq2seq"
predictor
- Replaced
deepcopy
ofInstance
s with newInstance.duplicate()
method. - A bug where pretrained sentence taggers would fail to be initialized because some of the models were not imported.
- A bug in some RC models that would cause mixed precision training to crash when using NVIDIA apex.
- Predictor names were inconsistently switching between dashes and underscores. Now they all use underscores.
- Added option to SemanticDependenciesDatasetReader to not skip instances that have no arcs, for validation data
- Added a default predictors to several models
- Added sentiment analysis models to pretrained.py
- Added NLI models to pretrained.py
v1.0.0rc5 - 2020-05-14
- Moved the models into categories based on their format
- Made
transformer_qa
predictor accept JSON input with the keys "question" and "passage" to be consistent with thereading_comprehension
predictor.
conllu
dependency (previously part ofallennlp
's dependencies)
v1.0.0rc4 - 2020-05-14
We first introduced this CHANGELOG
after release v1.0.0rc4
, so please refer to the GitHub release
notes for this and earlier releases.