generated from Jonathan-Greve/GuildWarsMapBrowser
-
Notifications
You must be signed in to change notification settings - Fork 1
/
TerrainTexturedPixelShader.h
285 lines (231 loc) · 10.7 KB
/
TerrainTexturedPixelShader.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#pragma once
struct TerrainTexturedPixelShader
{
static constexpr char shader_ps[] = R"(
sampler ss: register(s0);
Texture2D textureAtlas : register(t0);
Texture2D terrain_texture_indices: register(t1);
Texture2D terrain_texture_weights: register(t2);
struct DirectionalLight
{
float4 ambient;
float4 diffuse;
float4 specular;
float3 direction;
float pad;
};
cbuffer PerFrameCB: register(b0)
{
DirectionalLight directionalLight;
};
cbuffer PerObjectCB : register(b1)
{
matrix World;
uint4 uv_indices[8];
uint4 texture_indices[8];
uint4 blend_flags[8];
uint num_uv_texture_pairs;
float pad1[3];
};
cbuffer PerCameraCB : register(b2)
{
matrix View;
matrix Projection;
};
cbuffer PerTerrainCB : register(b3)
{
int grid_dim_x;
int grid_dim_y;
float min_x;
float max_x;
float min_y;
float max_y;
float min_z;
float max_z;
float water_level;
float pad[3];
};
struct PixelInputType
{
float4 position : SV_POSITION;
float3 normal : NORMAL;
float2 tex_coords0 : TEXCOORD0;
float2 tex_coords1 : TEXCOORD1;
float2 tex_coords2 : TEXCOORD2;
float2 tex_coords3 : TEXCOORD3;
float2 tex_coords4 : TEXCOORD4;
float2 tex_coords5 : TEXCOORD5;
float2 tex_coords6 : TEXCOORD6;
float2 tex_coords7 : TEXCOORD7;
float terrain_height : TEXCOORD8;
};
float4 main(PixelInputType input) : SV_TARGET
{
// Normalize the input normal
float3 normal = normalize(input.normal);
// Calculate the dot product of the normal and light direction
float NdotL = max(dot(normal, -directionalLight.direction), 0.0);
// Calculate the ambient and diffuse components
float4 ambientComponent = directionalLight.ambient;
float4 diffuseComponent = directionalLight.diffuse * NdotL;
// Extract the camera position from the view matrix
float3 cameraPosition = float3(View._41, View._42, View._43);
// Calculate the specular component using the Blinn-Phong model
float3 viewDirection = normalize(cameraPosition - input.position.xyz);
float3 halfVector = normalize(-directionalLight.direction + viewDirection);
float NdotH = max(dot(normal, halfVector), 0.0);
float shininess = 80.0; // You can adjust this value for shininess
float specularIntensity = pow(NdotH, shininess);
float4 specularComponent = directionalLight.specular * specularIntensity;
// Combine the ambient, diffuse, and specular components to get the final color
float4 finalColor = ambientComponent + diffuseComponent + specularComponent;
// ------------ TEXTURE START ----------------
float2 texelSize = float2(1.0 / (grid_dim_x - 3), 1.0 / (grid_dim_y - 3));
// Calculate the tile index
float2 tileIndex = floor(input.tex_coords0 / texelSize);
// Compute the corner coordinates based on the tile index
float2 topLeftTexCoord = tileIndex * texelSize;
float2 topRightTexCoord = topLeftTexCoord + float2(texelSize.x, 0);
float2 bottomLeftTexCoord = topLeftTexCoord + float2(0, texelSize.y);
float2 bottomRightTexCoord = topLeftTexCoord + texelSize;
// Calculate the texture size
float2 textureSize = float2(grid_dim_x, grid_dim_y);
// Convert normalized texture coordinates to integer pixel coordinates
int2 topLeftCoord = int2(topLeftTexCoord * textureSize);
int2 topRightCoord = int2(topRightTexCoord * textureSize);
int2 bottomLeftCoord = int2(bottomLeftTexCoord * textureSize);
int2 bottomRightCoord = int2(bottomRightTexCoord * textureSize);
// Load the terrain_texture_indices without interpolation
int topLeftTexIdx = int(terrain_texture_indices.Load(int3(topLeftCoord, 0)).r * 255.0);
int topRightTexIdx = int(terrain_texture_indices.Load(int3(topRightCoord, 0)).r * 255.0);
int bottomLeftTexIdx = int(terrain_texture_indices.Load(int3(bottomLeftCoord, 0)).r * 255.0);
int bottomRightTexIdx = int(terrain_texture_indices.Load(int3(bottomRightCoord, 0)).r * 255.0);
// Calculate the UV coordinates for each texture in the textureAtlas
uint indices[4] = { topLeftTexIdx, topRightTexIdx, bottomLeftTexIdx, bottomRightTexIdx };
float atlasTileSize = 1.0 / 8.0;
float innerRegionScale = 0.50; // This is used to extract the 25% of the texture from each corner
float2 atlasCoords[8];
int atlasCoordCount = 0;
float offset_factor_x = 0.12;
float offset_factor_y = 0.08;
float scale_factor_x = 1 - offset_factor_x;
float scale_factor_y = 1 - offset_factor_y;
float2 cornerOffsets[4] = {
float2(0.0, 0.0), // TL
float2(atlasTileSize - atlasTileSize * innerRegionScale, 0.0), // TR
float2(0.0, atlasTileSize - atlasTileSize * innerRegionScale), // BL
float2(atlasTileSize - atlasTileSize * innerRegionScale, atlasTileSize - atlasTileSize * innerRegionScale) // BR
};
// Case 1: top edge shares vertices
float2 relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (topLeftTexIdx == topRightTexIdx) {
uint index = topLeftTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
// offset by offset_factor and make sure to stay within the bounds of the texture
relativeUV.y = 1.0 - relativeUV.y;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x + offset_factor_x, relativeUV.y * scale_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[0] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 2: bottom edge shares vertices
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (bottomLeftTexIdx == bottomRightTexIdx) {
uint index = bottomLeftTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x, relativeUV.y * scale_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[0] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 3: left edge shares vertices
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (topLeftTexIdx == bottomLeftTexIdx) {
uint index = topLeftTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x + offset_factor_x, relativeUV.y * scale_factor_y + offset_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[2] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 4: right edge shares vertices
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (topRightTexIdx == bottomRightTexIdx) {
uint index = topRightTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
relativeUV.x = 1.0 - relativeUV.x;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x + offset_factor_x, relativeUV.y * scale_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[2] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 5: top left corner
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (topLeftTexIdx != topRightTexIdx && topLeftTexIdx != bottomLeftTexIdx) {
uint index = topLeftTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
relativeUV.x = 1.0 - relativeUV.x;
relativeUV.y = 1.0 - relativeUV.y;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x, relativeUV.y * scale_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[3] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 6: top right corner
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (topRightTexIdx != topLeftTexIdx && topRightTexIdx != bottomRightTexIdx) {
uint index = topRightTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x, relativeUV.y * scale_factor_y + offset_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[1] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 7: bottom left corner
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (bottomLeftTexIdx != topLeftTexIdx && bottomLeftTexIdx != bottomRightTexIdx) {
uint index = bottomLeftTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
relativeUV.x = 1.0 - relativeUV.x;
relativeUV.y = 1.0 - relativeUV.y;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x, relativeUV.y * scale_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[1] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Case 8: bottom right corner
relativeUV = (input.tex_coords0 - topLeftTexCoord) / texelSize;
if (bottomRightTexIdx != topRightTexIdx && bottomRightTexIdx != bottomLeftTexIdx) {
uint index = bottomRightTexIdx;
float x = (index % 8) * atlasTileSize;
float y = (index / 8) * atlasTileSize;
float2 offset_relativeUV = float2(relativeUV.x * scale_factor_x, relativeUV.y * scale_factor_y);
atlasCoords[atlasCoordCount++] = float2(x, y) + cornerOffsets[3] + offset_relativeUV * (atlasTileSize * innerRegionScale);
}
// Sample the textureAtlas using the calculated UV coordinates
int non_zero_alphas_count = 0;
float total_alpha = 0.0;
float4 sampledColors[8];
for (int i = 0; i < 8; ++i) {
if (i == atlasCoordCount) break;
sampledColors[i] = textureAtlas.Sample(ss, atlasCoords[i]);
if (sampledColors[i].a > 0) {
non_zero_alphas_count += 1;
total_alpha += sampledColors[i].a;
}
}
// Perform texture splatting using the normalized weights
float4 splattedTextureColor = float4(0.0, 0.0, 0.0, 1.0);
for (int i = 0; i < 8; ++i) {
if (i == atlasCoordCount) break;
if (sampledColors[i].a == 0) continue;
splattedTextureColor.rgb += sampledColors[i].rgb * sampledColors[i].a / total_alpha;
}
// ------------ TEXTURE END ----------------
float4 outputColor;
// Multiply the sampled color with the finalColor
if (input.terrain_height <= water_level) {
float4 blue_color = float4(0.11, 0.65, 0.81, 1.0); // Water color
outputColor = finalColor * splattedTextureColor * blue_color;
}
else {
outputColor = finalColor * splattedTextureColor;
}
// Return the result
return outputColor;
}
)";
};