-
Notifications
You must be signed in to change notification settings - Fork 28
/
odir_kappa_score.py
52 lines (45 loc) · 1.9 KB
/
odir_kappa_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright 2019 Jordi Corbilla. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import csv
import os
import numpy as np
from sklearn import metrics
class FinalScore:
def __init__(self, new_folder):
self.new_folder = new_folder
def odir_metrics(self, gt_data, pr_data):
th = 0.5
gt = gt_data.flatten()
pr = pr_data.flatten()
kappa = metrics.cohen_kappa_score(gt, pr > th)
f1 = metrics.f1_score(gt, pr > th, average='micro')
auc = metrics.roc_auc_score(gt, pr)
final_score = (kappa + f1 + auc) / 3.0
return kappa, f1, auc, final_score
def import_data(self, filepath):
with open(filepath, 'r') as f:
reader = csv.reader(f)
header = next(reader)
pr_data = [[int(row[0])] + list(map(float, row[1:])) for row in reader]
pr_data = np.array(pr_data)
return pr_data
def output(self):
gt_data = self.import_data(os.path.join(self.new_folder, 'odir_ground_truth.csv'))
pr_data = self.import_data(os.path.join(self.new_folder, 'odir_predictions.csv'))
kappa, f1, auc, final_score = self.odir_metrics(gt_data[:, 1:], pr_data[:, 1:])
print("Kappa score:", kappa)
print("F-1 score:", f1)
print("AUC value:", auc)
print("Final Score:", final_score)