-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathttest_srcc.py
49 lines (38 loc) · 1.24 KB
/
ttest_srcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from scipy.stats import ttest_ind
from joblib import Parallel,delayed,load,dump
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from joblib import load
from scipy.stats import pearsonr,spearmanr
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
import glob
import os
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
scores_df = pd.read_csv('./apv_livestream_scores.csv')
srocc_list = []
test_zips = []
def find(lst, a):
return [i for i, x in enumerate(lst) if x==a]
test_zip_files = glob.glob('./results/*.csv')
X = []
tzf_names = []
for tzf in test_zip_files:
test_df = pd.read_csv(tzf)
tzf_names.append(os.path.splitext(os.path.basename(tzf))[0].split('_')[0].upper())
srocc_list = test_df['srcc']
X.append(srocc_list)
print(tzf_names)
X = np.asarray(X)
print(X)
print(np.median(X,1))
print(X.shape)
for alg_index1 in range(X.shape[0]):
for alg_index2 in range(X.shape[0]):
#if(alg_index1==alg_index2):
# continue
ttest = ttest_ind(X[alg_index1,:],X[alg_index2,:],equal_var=False)
print(tzf_names[alg_index1],tzf_names[alg_index2],ttest)