-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathzip_feat_and_scores.py
56 lines (46 loc) · 1.56 KB
/
zip_feat_and_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
from matplotlib import pyplot as plt
import pandas as pd
import os
import glob
from joblib import load,dump
import argparse
parser = argparse.ArgumentParser(description='Zip ChipQA features from a folder with scores and names from a csv file into a single dictionary and save it')
parser.add_argument('input_folder',help='Folder containing input features generated by chipqa.py (format: name_of_video.z)')
parser.add_argument('csv_file',help='CSV file containing video name under column "video" and score under column "MOS"')
parser.add_argument('results_file',help='File where features and scores are stored. Must end with .z extension')
args = parser.parse_args()
dataset='apv'
names = []
score_list =[]
if(dataset=='apv'):
csv_file =args.csv_file
score_csv = pd.read_csv(csv_file)
folder =args.input_folder
filenames = glob.glob(os.path.join(folder,'*.z'))
feats = []
scores = []
ns = []
for i,file in enumerate(sorted(filenames)):
fname = os.path.basename(file)
print(fname)
bname = os.path.splitext(fname)[0]
yuv_fname = os.path.splitext(fname)[0]+'.mp4'
if(dataset=='apv'):
name = os.path.splitext(fname)[0]+'.yuv'
score = score_csv[score_csv['video'] ==name].MOS.iloc[0]
X = load(file)
print(X)
x = X['features']
print(x.shape)
y = score
x = np.asarray(x)
feats.append(x)
scores.append(y)
ns.append(fname)
feats = np.asarray(feats)
print(feats.shape)
X = {'features':feats,'score':scores,'name':ns}
dump(X,args.results_file,compress=('lzma',3))
print('dump done')
print()