-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
514 lines (408 loc) · 23.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# -*- coding: utf-8 -*-
# Diagnostic helper functions for Tensorflow session
import tensorflow as tf
from tensorflow.python.client import device_lib
import numpy as np
import pandas as pd
import scipy
from scipy import stats
from sklearn.metrics import roc_auc_score, roc_curve, auc
import os, time, datetime, math
from lnc import MI
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import rc
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn-darkgrid')
plt.style.use('seaborn-talk')
class Utils(object):
@staticmethod
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
#return local_device_protos
print('Available GPUs:')
print([x.name for x in local_device_protos if x.device_type == 'GPU'])
@staticmethod
def scope_variables(name):
with tf.variable_scope(name):
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name)
@staticmethod
def run_diagnostics(model, config, directories, sess, saver, train_handle,
test_handle, start_time, v_auc_best, epoch, step, name, v_cvm):
t0 = time.time()
improved = ''
sess.run(tf.local_variables_initializer())
feed_dict_train = {model.training_phase: False, model.handle: train_handle}
feed_dict_test = {model.training_phase: False, model.handle: test_handle}
try:
t_auc, t_acc, t_loss, t_summary = sess.run([model.auc_op, model.accuracy, model.cost, model.merge_op],
feed_dict=feed_dict_train)
model.train_writer.add_summary(t_summary)
except tf.errors.OutOfRangeError:
t_auc, t_loss, t_acc = float('nan'), float('nan'), float('nan')
v_MI_kraskov, v_MI_MINE, v_MI_labels_kraskov, v_MI_labels_MINE, v_auc, v_acc, v_loss, v_summary, y_true, y_pred = sess.run([model.MI_logits_theta_kraskov, model.MI_logits_theta, model.MI_logits_labels_kraskov, model.MI_logits_labels_MINE, model.auc_op, model.accuracy, model.cost, model.merge_op, model.labels, model.pred], feed_dict=feed_dict_test) # TEST
model.test_writer.add_summary(v_summary)
if v_auc > v_auc_best:
v_auc_best = v_auc
improved = '[*]'
if epoch>5:
save_path = saver.save(sess,
os.path.join(directories.checkpoints_best, 'MI_reg_{}_epoch{}.ckpt'.format(name, epoch)),
global_step=epoch)
print('Weights saved to file: {}'.format(save_path))
print('Epoch {} | Training Acc: {:.3f} | Test Acc: {:.3f} | Test auc: {:.3f} | MI_kraskov: {:.3f} | MI_MINE: {:.3f} | MI_labels_kraskov: {:.3f} | MI_labels_MINE: {:.3f} | Train Loss: {:.3f} | Test Loss: {:.3f} | Test cvm: {:.3f} | Rate: {} examples/s ({:.2f} s) {}'.format(epoch, t_acc, v_acc, v_auc, v_MI_kraskov, v_MI_MINE, v_MI_labels_kraskov, v_MI_labels_MINE, t_loss, v_loss, v_cvm, int(config.batch_size * 1000 /(time.time()-t0)), time.time() - start_time, improved))
return v_auc_best
@staticmethod
def run_adv_diagnostics(model, config, directories, sess, saver, train_handle,
test_handle, start_time, v_auc_best, epoch, step, name, v_cvm):
t0 = time.time()
improved = ''
sess.run(tf.local_variables_initializer())
feed_dict_train = {model.training_phase: False, model.handle: train_handle}
feed_dict_test = {model.training_phase: False, model.handle: test_handle}
t_acc, t_loss, t_auc, t_summary = sess.run([model.accuracy, model.cost, model.auc_op, model.merge_op], feed_dict = feed_dict_train)
v_ops = [model.accuracy, model.cost, model.MI_logits_theta_kraskov, model.adv_loss, model.auc_op, model.total_loss, model.merge_op]
v_acc, v_loss, v_MI, v_adv_loss, v_auc, v_total, v_summary = sess.run(v_ops, feed_dict=feed_dict_test)
model.train_writer.add_summary(t_summary)
model.test_writer.add_summary(v_summary)
if v_auc > v_auc_best:
v_auc_best = v_auc
improved = '[*]'
if epoch>0:
save_path = saver.save(sess,
os.path.join(directories.checkpoints_best, 'adv_{}_epoch{}.ckpt'.format(name, epoch)),
global_step=epoch)
print('Weights saved to file: {}'.format(save_path))
print('Epoch {} | Training Acc: {:.3f} | Test Acc: {:.3f} | Test Loss: {:.3f} | Test AUC: {:.3f} | Mutual Info: {:.3f} | Test cvm: {:.3f} | Adv. loss: {:.3f} | Total loss: {:.3f} | Rate: {} examples/s ({:.2f} s) {}'.format(epoch, t_acc, v_acc, v_loss, v_auc, v_MI, v_cvm, v_adv_loss, v_total, int(config.batch_size * 1000 /(time.time()-t0)), time.time() - start_time, improved))
return v_auc_best
@staticmethod
def jsd_metric(df, block, name, selection_fraction=0.01):
"""
Attempt to quantify sculpting.
Evaluates mass decorrelation on some blackbox learner by evaluating a discrete
approximation of the Jensen-Shannon divergence between the distributions of interest
(here a mass-related quantity) passing and failing some learner threshold. If the
learned representation used for classification is noninformative of the variable of
interest this should be low.
"""
mbc_cutoff = 5.2425
mbc_upper = 5.29
df = df[df.B_Mbc > mbc_cutoff]
df = df[df.B_Mbc < mbc_upper]
v_auc = roc_auc_score(df.label.values, df.y_prob.values)
df_sig, df_bkg = df[df.label>0.5], df[df.label<0.5]
select_bkg = df_bkg.nlargest(int(df_bkg.shape[0]*selection_fraction), columns='y_prob')
min_threshold = select_bkg.y_prob.min()
df_tight = df[df.y_prob > min_threshold].query('B_deltaE < 0.1')
df_tight = df_tight[df_tight.B_deltaE > -0.25]
return jsd_discrete
@staticmethod
def online_fit(df, block, name, plot_components=True):
import iminuit
import probfit
rc('text', usetex=False)
sel_frac = 0.005
v_auc = roc_auc_score(df.label.values, df.y_prob.values)
df_sig, df_bkg = df[df.label>0.5], df[df.label<0.5]
select_bkg = df_bkg.nlargest(int(df_bkg.shape[0]*sel_frac), columns='y_prob')
min_threshold = select_bkg.y_prob.min()
df_tight = df[df.y_prob > min_threshold].query('B_deltaE < 0.1')
df_tight = df_tight[df_tight.B_deltaE > -0.25]
q = df_tight[df_tight.B_mctype < 4]
s = df_tight[df_tight.B_mctype > 6]
mbc_cutoff = 5.2425
fit_range = (mbc_cutoff, 5.29)
s, q = s[s.B_Mbc > mbc_cutoff], q[q.B_Mbc > mbc_cutoff]
N_sig_true = int(s._weight_.sum())
N_bkg_true = int(q._weight_.sum())
data = pd.concat([q,s])
extended_crystalball = probfit.Extended(probfit.Normalized(probfit.crystalball, fit_range), extname='N_sig')
cb_pars = dict(alpha=1.277, n=11.66, mean=5.27934, sigma=0.003135, N_sig=s.shape[0] * s._weight_.mean(),
error_N_sig=10, fix_alpha=True, fix_n=True, fix_mean=True, fix_sigma=True)
extended_argus = probfit.Extended(probfit.Normalized(probfit.argus, fit_range), extname='N_bkg')
argus_pars = dict(chi=8.0, c=5.29, p=0.5, N_bkg=q.shape[0] * q._weight_.mean(), fix_c=True,
error_chi=0.1, error_p=0.1, error_N_bkg=10, limit_chi=(0.,10.)) # , limit_p=(0.2,2.))
pdf = probfit.AddPdf(extended_crystalball, extended_argus)
unbinned_likelihood = probfit.UnbinnedLH(pdf, data.B_Mbc.values, extended=True, extended_bound=fit_range, weights=data._weight_.values)
start_pars = {**cb_pars, **argus_pars}
minuit = iminuit.Minuit(unbinned_likelihood, pedantic=False, print_level=0, **start_pars)
# MLE
try:
start_time = time.time()
print('Starting fit | # fit points', df_tight.shape[0])
minuit.migrad()
print('Fit complete ({:.3f} s)'.format(time.time()-start_time))
print('ML Parameters OK?', minuit.migrad_ok())
print('Cov matrix OK?', minuit.matrix_accurate())
except RuntimeError:
print('MLE fit failure.')
return -1.0, -999., v_auc, N_sig_true, 0, 10**4
minuit_converge = minuit.migrad_ok()
minuit_pos_def = minuit.matrix_accurate()
if not (minuit_converge and minuit_pos_def):
print('MLE fit failure.')
return -1.0, -999., v_auc, N_sig_true, 0, 10**4
# minuit.minos(var='N_sig')
h = minuit.hesse()
N_sig = [d for d in h if d['name']=='N_sig'][0]
print('N_sig: {} ({})| Error_sig: {}'.format(N_sig['value'], N_sig_true, N_sig['error']))
sig_value_error_ratio = N_sig['value'] / N_sig['error']
weighted_mse = ((N_sig['value'] - N_sig_true) * N_sig['error']/N_sig['value'])**2
weighted_mse = (N_sig['value'] / N_sig['error'])**2 / abs(N_sig['value'] - N_sig_true)
N_bkg = [d for d in h if d['name']=='N_bkg'][0]
((data_edges, datay), (errorp, errorm), (total_pdf_x, total_pdf_y), parts) = unbinned_likelihood.draw(minuit, parts=True)
plt.clf()
m = probfit.mid(data_edges)
rc('text', usetex=True)
plt.errorbar(m, datay, errorp, fmt='.', capsize=1, color='Gray', label='Data', alpha=0.8)
plt.plot(total_pdf_x, total_pdf_y, lw=4, label='Total Model')
labels = [r'Signal PDF: {}$\pm${} ({})'.format(int(N_sig['value']), int(N_sig['error']), N_sig_true),
r'Background PDF: {}$\pm${} ({})'.format(int(N_bkg['value']), int(N_bkg['error']), N_bkg_true)]
sea_green = '#54ff9f'
crimson_tide = '#e50005'
steel_blue = '#4e6bbd'
colors = [sea_green, crimson_tide]
for label, part, c in zip(labels, parts, colors):
x, y = part
plt.plot(x, y, ls='--', lw=2, label=label, color=c)
if plot_components:
nbins=100
sns.distplot(q.B_Mbc, color=crimson_tide, hist=True, kde=False, norm_hist=False, label = r'$e^+e^-\rightarrow q\bar{q}$',
bins=nbins, hist_kws=dict(linewidth=1.5, alpha=0.5, weights=q._weight_, histtype='step'))
sns.distplot(s.B_Mbc, color=sea_green, hist=True, kde=False, norm_hist=False, label = r'$b \rightarrow s \gamma$',
bins=nbins, hist_kws=dict(linewidth=1.5, alpha=0.5, weights=s._weight_, histtype='step'))
fs_title = 18
plt.grid(True)
plt.legend(loc='upper left')
plt.ylim((0,700))
# plt.legend(loc='best')
plt.xlabel(r'$M_{bc}$ (GeV)', fontsize=fs_title)
plt.ylabel('Events', fontsize=fs_title)
plt.title(r'AUC: {:.3f} | $N_S / \delta N_S$: {:.3f}'.format(v_auc, sig_value_error_ratio), fontsize=fs_title)
plt.savefig(os.path.join('/data/cephfs/punim0011/jtan/ray_results',
'graphs/block_{}-{}-{}.pdf'.format(block, datetime.datetime.now().isoformat(), name)),
bbox_inches='tight',format='pdf', dpi=128)
rc('text', usetex=False)
return sig_value_error_ratio, weighted_mse, v_auc, N_sig_true, N_sig['value'], N_sig['error']
@staticmethod
def run_tune_diagnostics(model, config, directories, sess, saver, train_handle, test_handle,
start_time, v_auc_best, block, step, name, v_auc, v_reward=None, adversary=False):
t0 = time.time()
improved = ''
sess.run(tf.local_variables_initializer())
feed_dict_train = {model.training_phase: False, model.handle: train_handle}
feed_dict_test = {model.training_phase: False, model.handle: test_handle}
try:
t_auc, t_acc, t_loss, t_summary, t_true, t_prob = sess.run([model.auc_op, model.accuracy, model.cost, model.merge_op,
model.labels, model.softmax], feed_dict=feed_dict_train)
model.train_writer.add_summary(t_summary)
t_auc = roc_auc_score(y_true=t_true, y_score=t_prob)
except tf.errors.OutOfRangeError:
t_auc, t_loss, t_acc = float('nan'), float('nan'), float('nan')
v_MI_kraskov, v_MI_MINE, v_MI_labels_kraskov, v_adv_loss, v_acc, v_loss, v_summary, y_true, y_pred, v_pivots, y_prob = sess.run([model.MI_logits_theta_kraskov,
model.MI_logits_theta, model.MI_logits_labels_kraskov, model.adv_loss, model.accuracy, model.cost,
model.merge_op, model.labels, model.pred, model.pivots[:,0], model.softmax], feed_dict=feed_dict_test) # TEST
model.test_writer.add_summary(v_summary)
# Calculate MMD between Z spectrum pre/post selection
# v_mmd = np.sqrt(Utils.mmd2_z(v_pivots, y_pred, y_true, y_prob, selection_fraction=0.1))
# v_auc = roc_auc_score(y_true=y_true, y_score=y_prob)
if v_auc > v_auc_best:
v_auc_best = v_auc
improved = '[*]'
if adversary:
print("Block {} | Test Acc: {:.3f} | Train auc: {:.3f} | Test auc: {:.3f} | MI_kraskov: {:.3f} | Adv_loss: {:.3f} | "
"MI_labels_kraskov: {:.3f} | Train Loss: {:.3f} | Test Loss: {:.3f} | Reward: {:.3f} | "
"Rate: {} examples/s ({:.2f} s) {}".format(block, v_acc, t_auc, v_auc, v_MI_kraskov, v_adv_loss, v_MI_labels_kraskov,
t_loss, v_loss, v_reward, int(config.batch_size/(time.time()-t0)), time.time() - start_time, improved))
else:
print("Block {} | Test Acc: {:.3f} | Train auc: {:.3f} | Test auc: {:.3f} | MI_kraskov: {:.3f} | MI_MINE: {:.3f} | "
"MI_labels_kraskov: {:.3f} | Train Loss: {:.3f} | Test Loss: {:.3f} | Reward: {:.3f} | "
"Rate: {} examples/s ({:.2f} s) {}".format(block, v_acc, t_auc, v_auc, v_MI_kraskov, v_MI_MINE, v_MI_labels_kraskov,
t_loss, v_loss, v_reward, int(config.batch_size/(time.time()-t0)), time.time() - start_time, improved))
return v_auc_best, v_MI_kraskov, v_acc, v_loss
@staticmethod
def plot_ROC_curve(y_true, y_pred, out, meta = ''):
plt.style.use('seaborn-darkgrid')
plt.style.use('seaborn-talk')
plt.style.use('seaborn-pastel')
# Compute ROC curve, integrate
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
roc_auc = auc(fpr, tpr)
print('Val AUC:', roc_auc)
plt.figure()
plt.axes([.1,.1,.8,.7])
plt.figtext(.5,.9, r'$\mathrm{Receiver \;Operating \;Characteristic}$', fontsize=15, ha='center')
plt.figtext(.5,.85, meta, fontsize=10,ha='center')
plt.plot(fpr, tpr, # color='darkorange',
lw=2, label='ROC (area = %0.4f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=1.0, linestyle='--')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel(r'$\mathrm{False \;Positive \;Rate}$')
plt.ylabel(r'$\mathrm{True \;Positive \;Rate}$')
plt.legend(loc="lower right")
plt.savefig(os.path.join('results', '{}_ROC.pdf'.format(out)), format='pdf', dpi=1000)
plt.gcf().clear()
@staticmethod
def mutual_information_1D_kraskov(x, y):
# k-NN based estimate of mutual information
mi = MI.mi_LNC([x,y],k=5,base=np.exp(1),alpha=0.2)
return mi
@staticmethod
def rbf_mixed_mmd2(X, Y, sigmas=[1.0, 2.0, 5.0, 10.0, 20.0, 40.0, 80.0]):
"""
Parameters
____
X: Matrix, shape: (n_samples, features)
Y: Matrix, shape: (m_samples, features)
sigmas: RBF parameter
Returns
____
mmd2: MMD under Gaussian mixed kernel
"""
XX = X @ X.T
XY = X @ Y.T
YY = Y @ Y.T
M = np.shape(X)[0]
N = np.shape(Y)[0]
assert ((M > 10) and (N > 10)), 'Insufficient samples for mmd estimation.'
X_sqnorm = np.sum(X**2, axis=-1)
Y_sqnorm = np.sum(Y**2, axis=-1)
row_bc = lambda x: np.expand_dims(x,0)
col_bc = lambda x: np.expand_dims(x,1)
K_XX, K_XY, K_YY = 0,0,0
for sigma in sigmas:
gamma = 1 / (2 * sigma**2)
K_XX += np.exp( -gamma * (col_bc(X_sqnorm) - 2 * XX + row_bc(X_sqnorm)))
K_XY += np.exp( -gamma * (col_bc(X_sqnorm) - 2 * XY + row_bc(Y_sqnorm)))
K_YY += np.exp( -gamma * (col_bc(Y_sqnorm) - 2 * YY + row_bc(Y_sqnorm)))
mmd2 = np.sum(K_XX) / M**2 - 2 * np.sum(K_XY) / (M*N) + np.sum(K_YY) / N**2
return mmd2
@staticmethod
def cvm_z(z, prediction, labels, confidence, selection_fraction):
z = np.squeeze(z)
df = pd.DataFrame([z, prediction, labels, confidence]).T
df.columns = ['z', 'pred', 'labels', 'confidence']
df_bkg = df[df['labels']<0.5]
select_bkg = df_bkg.nlargest(int(df_bkg.shape[0]*selection_fraction), columns='confidence')
z_bkg = np.squeeze(df_bkg.z.values)
z_bkg_postsel = np.squeeze(select_bkg.z.values)
cvm = scipy.stats.energy_distance(z_bkg, z_bkg_postsel)
return cvm
@staticmethod
def mmd2_z(z, prediction, labels, confidence, selection_fraction):
z = np.squeeze(z)
df = pd.DataFrame([z, prediction, labels, confidence]).T
df.columns = ['z', 'pred', 'labels', 'confidence']
df_bkg = df[df['labels']<0.5]
select_bkg = df_bkg.nlargest(int(df_bkg.shape[0]*selection_fraction), columns='confidence')
z_bkg = np.expand_dims(df_bkg.z.values, axis=1)
mmd2 = Utils.rbf_mixed_mmd2(z_bkg, z_bkg_postsel)
return mmd2
@staticmethod
def reweight(event_counts, integrated_lumi=10**9):
"""
Inputs: Integrated luminosity in nb^{-1}
1 ab^{-1} = 10**9 1 nb^{-1}
Outputs: Dict containing event normalization to lumi
Default luminosity is 1 ab^{-1}
"""
weights = {}
xsections = {'uu': 1.61, 'dd': 0.4, 'cc': 1.30, 'ss': 0.38, 'charged': 0.514*1.05, 'mixed': 0.486*1.05, 'signal':
3.43*10**(-4)*1.05, 'Xs': 2.575*10**(-4)*1.05, 'KStarplus': 4.31*10**(-5)*1.05*0.514, 'KStar0': 4.24*10**(-5)*0.486*1.05}
xsections['Bu'] = xsections['Xs'] * 0.514
xsections['Bd'] = xsections['Xs'] * 0.486
for k in event_counts.keys():
weights[k] = integrated_lumi * xsections[k] / event_counts[k]
return weights
@staticmethod
def jsd_metric(df, selection_fraction=0.005, nbins=32, mbc_min=5.2425, mbc_max=5.29):
"""
Attempt to quantify sculpting.
Evaluates mass decorrelation on some blackbox learner by evaluating a discrete
approximation of the Jensen-Shannon divergence between the distributions of interest
(here a mass-related quantity) passing and failing some learner threshold. If the
learned representation used for classification is noninformative of the variable of
interest this should be low.
"""
def _one_hot_encoding(x, nbins):
x_one_hot = np.zeros((x.shape[0], nbins))
x_one_hot[np.arange(x.shape[0]), x] = 1
x_one_hot_sum = np.sum(x_one_hot, axis=0)/x_one_hot.shape[0]
return x_one_hot_sum
df_bkg = df[df.label<0.5]
df_bkg = df_bkg[df_bkg.B_deltaE > -0.25].query('B_deltaE < 0.1')
select_bkg = df_bkg.nlargest(int(df_bkg.shape[0]*selection_fraction), columns='y_prob')
min_threshold = select_bkg.y_prob.min()
df_pass = df_bkg[df_bkg.y_prob > min_threshold]
df_bkg_pass = df_pass[df_pass.label < 0.5]
df_fail = df_bkg[df_bkg.y_prob < min_threshold]
df_bkg_fail = df_fail[df_fail.label < 0.5]
N_bkg_pass = int(df_bkg_pass._weight_.sum())
N_bkg_fail = int(df_bkg_fail._weight_.sum())
print('N_bkg_pass / N_bkg_fail: {}'.format(N_bkg_pass/N_bkg_fail))
# Discretization
mbc_bkg_pass_discrete = np.digitize(df_bkg_pass.B_Mbc, bins=np.linspace(mbc_min,mbc_max,nbins+1), right=False)-1
mbc_bkg_fail_discrete = np.digitize(df_bkg_fail.B_Mbc, bins=np.linspace(mbc_min,mbc_max,nbins+1), right=False)-1
mbc_bkg_pass_sum = _one_hot_encoding(mbc_bkg_pass_discrete, nbins)
mbc_bkg_fail_sum = _one_hot_encoding(mbc_bkg_fail_discrete, nbins)
M = 0.5*mbc_bkg_pass_sum + 0.5*mbc_bkg_fail_sum
kld_pass = scipy.stats.entropy(mbc_bkg_pass_sum, M)
kld_fail = scipy.stats.entropy(mbc_bkg_fail_sum, M)
jsd_discrete = 0.5*kld_pass + 0.5*kld_fail
return jsd_discrete
@staticmethod
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
@staticmethod
def get_parameter_overview(variables, title, limit=40):
"""Returns a string with variables names, their shapes, count, and types.
To get all trainable parameters pass in `tf.trainable_variables()`.
Args:
variables: List of `tf.Variable`(s).
limit: If not `None`, the maximum number of variables to include.
Returns:
A string with a table like in the example.
+----------------+---------------+------------+---------+
| Name | Shape | Size | Type |
+----------------+---------------+------------+---------+
| FC_1/weights:0 | (63612, 1024) | 65,138,688 | float32 |
| FC_1/biases:0 | (1024,) | 1,024 | float32 |
| FC_2/weights:0 | (1024, 32) | 32,768 | float32 |
| FC_2/biases:0 | (32,) | 32 | float32 |
+----------------+---------------+------------+---------+
Total: 65,172,512
"""
print(title)
max_name_len = max([len(v.name) for v in variables] + [len("Name")])
max_shape_len = max([len(str(v.get_shape())) for v in variables] + [len(
"Shape")])
max_size_len = max([len("{:,}".format(v.get_shape().num_elements()))
for v in variables] + [len("Size")])
max_type_len = max([len(v.dtype.base_dtype.name) for v in variables] + [len(
"Type")])
var_line_format = "| {: <{}s} | {: >{}s} | {: >{}s} | {: <{}s} |"
sep_line_format = var_line_format.replace(" ", "-").replace("|", "+")
header = var_line_format.replace(">", "<").format("Name", max_name_len,
"Shape", max_shape_len,
"Size", max_size_len,
"Type", max_type_len)
separator = sep_line_format.format("", max_name_len, "", max_shape_len, "",
max_size_len, "", max_type_len)
lines = [separator, header, separator]
total_weights = sum(v.get_shape().num_elements() for v in variables)
# Create lines for up to 80 variables.
for v in variables:
if limit is not None and len(lines) >= limit:
lines.append("[...]")
break
lines.append(var_line_format.format(
v.name, max_name_len,
str(v.get_shape()), max_shape_len,
"{:,}".format(v.get_shape().num_elements()), max_size_len,
v.dtype.base_dtype.name, max_type_len))
lines.append(separator)
lines.append("Total: {:,}".format(total_weights))
print("\n".join(lines))