forked from rtmrtmrtmrtm/weakmon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wwvmon.py
executable file
·752 lines (647 loc) · 24.6 KB
/
wwvmon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#!/usr/local/bin/python
#
# decode WWWV transmissions.
# Robert Morris, AB1HL
#
# set radio to AM, 2.5/5/10/15/20 MHz.
#
import weakargs
import weakutil
import weakaudio
import weakcat
import sys
import time
import wave
import numpy
import scipy
# optimizable tuning parameters.
filterwidth = 20 # Hz, 20.
filterorder = 3 # 100 hz bandpass filter, 3.
slicewin = 0 # seconds, 0=>off, 4.
slicesmooth = 0.2 # as a function of slicewin, 0=off, 0.0.
slicethresh = 0.25 # frac of min..max, 0.25.
smoothwin = 0.02 # smooth rectified samples, in seconds, 0.05.
topsecs = 4 # look at the best N seconds per 30 seconds, 2.
votewin = 3 # vote per bit over a window of this many minutes
# there are some tones that are constant; look for them
# to sync to minute.
# 0 means a constant zero bit,
# 1 means a constant 1 bit,
# 2 means a constant marker,
# -1 means zero or one, but unpredictable (but not marker).
# -2 means no tone at all (first second).
sync = [ -2, 0, -1, -1, -1, -1, -1, -1, 0, # 00..08
2, -1, -1, -1, -1, -1, -1, -1, -1, 0, # 09..18
2, -1, -1, -1, -1, -1, -1, -1, 0, 0, # 19..28
2, -1, -1, -1, -1, -1, -1, -1, -1, -1, # 29..38
2, -1, -1, 0, 0, 0, 0, 0, 0, 0, # 39..48
2, -1, -1, -1, -1, -1, -1, -1, -1, -1, # 49..58
2 ] # 59
# http://gordoncluster.wordpress.com/2014/02/13/python-numpy-how-to-generate-moving-averages-efficiently-part-2/
def smooth(values, window):
oavg = numpy.mean(abs(values))
#weights = numpy.repeat(1.0, window)/window
weights = numpy.hamming(window)
sma = numpy.convolve(values, weights, 'valid')
sma = sma[0:len(values)]
navg = numpy.mean(abs(sma))
sma = sma * (oavg / navg)
return sma
class Decode:
def __init__(self):
self.bits = None # save the 60 bits
self.strengths = None
self.dst1 = None
self.leap = None
self.year = None # since 0 C.E., e.g. 2017
self.minute = None
self.hour = None
self.day_of_year = None # 1 = Jan 1
self.dut = None # UT1 - UTC in seconds
self.dst2 = None
self.cardtime = None # seconds, relative to sound card or start of .wav file
def s(self):
x = "%02d %03d %02d:%02d" % (self.year,
self.day_of_year,
self.hour,
self.minute)
return x
# minutes since year 0.
# pretty bogus since doesn't know e.g. leap years.
def tomin(self):
x = 0
x += self.year * 365 * 24 * 60
x += (self.day_of_year - 1) * 24 * 60
x += self.hour * 60
x += self.minute
return x
# encode into 60 bits; returns an array of 0/1/2.
def encode(self):
bits = ( [] +
[ 0 ] +
[ 0 ] +
ebool(self.dst1) +
ebool(self.leap) +
e4((self.year - 2000) % 10) +
[ 0 ] +
[ 2 ] +
e4(self.minute % 10) +
[ 0 ] +
e3(self.minute / 10) +
[ 0 ] +
[ 2 ] +
e4(self.hour % 10) +
[ 0 ] +
e2(self.hour / 10) +
[ 0, 0 ] +
[ 2 ] +
e4(self.day_of_year % 10) +
[ 0 ] +
e4((self.day_of_year / 10) % 10) +
[ 2 ] +
e2(self.day_of_year / 100) +
[ 0, 0, 0, 0, 0, 0, 0 ] +
[ 2 ] +
ebool(self.dut >= 0) +
e4((self.year - 2000) / 10) +
ebool(self.dst2) +
e3(int(abs(self.dut*10))) +
[ 2 ]
)
assert len(bits) == 60
return bits
def ebool(b):
if b:
return [ 1 ]
else:
return [ 0 ]
def e1(x):
assert x >= 0 and x <= 1
return [ x & 1 ]
def e2(x):
assert x >= 0 and x < 4
return [ (x >> 0) & 1,
(x >> 1) & 1 ]
def e3(x):
assert x >= 0 and x < 8
return [ (x >> 0) & 1,
(x >> 1) & 1,
(x >> 2) & 1 ]
def e4(x):
assert x >= 0 and x < 16
return [ (x >> 0) & 1,
(x >> 1) & 1,
(x >> 2) & 1,
(x >> 3) & 1 ]
# turn four bits into a BCD digit 0..9.
def d4(bits):
assert len(bits) == 4
x = (bits[0] * 1 +
bits[1] * 2 +
bits[2] * 4 +
bits[3] * 8)
if x > 9:
return 9
return x
def d3(bits):
assert len(bits) == 3
x = (bits[0] * 1 +
bits[1] * 2 +
bits[2] * 4)
if x > 7:
return 7
return x
def d2(bits):
assert len(bits) == 2
x = (bits[0] * 1 +
bits[1] * 2)
if x > 3:
return 3
return x
# convert minutes since year 0 back to a Decode with year/day/hour/minute.
def frommin(m):
savem = m
d = Decode()
d.year = m / (365 * 24 * 60)
if d.year < 2000:
d.year = 2000
m = m % (365 * 24 * 60)
d.day_of_year = 1 + m / (24 * 60)
m = m % (24 * 60)
d.hour = m / 60
m = m % 60
d.minute = m
assert m < 60
#assert d.tomin() == savem
return d
class WWV:
def __init__(self):
global filterwidth
self.center = 100 # tone at 100 Hz
self.filterwidth = filterwidth
self.lorate = 315 # downsample to this, samples/second
# 300 works, but 200 does not!
# 441 is 11025/25, so resample() is fast.
# 315 is 11025/35, so resample() is fast.
self.ssamples = [ ]
self.ssampleslen = 0
self.cb = None
assert len(sync) == 60
# tm0 is the time in seconds of buf[0].
# if from a sound card, it's UNIX tim.
# if from a .wav file, it's relative to start of file.
def process(self, buf, eof, tm0):
global filterorder, votewin
# correct back to start of self.ssamples[]
tm0 -= self.ssampleslen / float(self.inrate)
self.ssamples.append(buf)
self.ssampleslen += len(buf)
while True:
if self.ssampleslen < 60 * self.inrate:
break
if eof == False and self.ssampleslen < (votewin+1)*60*self.inrate:
break
samples = numpy.concatenate(self.ssamples)
self.ssamples = None
self.ssampleslen = None
filter = weakutil.butter_bandpass(self.center - self.filterwidth/2,
self.center + self.filterwidth/2,
self.inrate, filterorder)
filtered = scipy.signal.lfilter(filter[0], filter[1], samples)
# down-sampling makes everything run much faster.
# XXX perhaps sacrificing fine alignment?
down = weakutil.resample(filtered, self.inrate, self.lorate)
self.process1(down, tm0)
trim = 60*self.inrate
samples = samples[trim:]
self.ssamples = [ samples ]
self.ssampleslen = len(samples)
tm0 += trim / float(self.inrate)
def wt(self, filename, data):
f = open(filename, "w")
numpy.savetxt(f, data, "%f")
f.close()
# generate a bit of amplitude, to be used to
# generate sync tone. highlen is length (in seconds)
# of high-amplitude tone. 0.170, 0.470, or 0.770.
def mksyncbit(self, highlen, high):
sec = numpy.array([])
sec = numpy.append(sec, numpy.repeat([-1.0], 0.030*self.lorate))
sec = numpy.append(sec, numpy.repeat([1.0], 0.170*self.lorate))
sec = numpy.append(sec, numpy.repeat([high], (highlen-0.170)*self.lorate))
sec = numpy.append(sec, numpy.repeat([-1.0], (1.0-0.030-highlen)*self.lorate))
if len(sec) < self.lorate:
sec = numpy.append(sec, numpy.zeros(self.lorate - len(sec)))
if len(sec) > self.lorate:
sec = sec[0:self.lorate]
return sec
# slice the rectified smoothed 100 hz tone,
# so that low amplitude is < 0 and high amplitude is > 0.
# looks at a local window of a few seconds because
# the levels change over time.
def slice(self, smoothed):
global slicewin, slicesmooth, slicethresh
if slicewin < 0.001:
# slicewin=0 disables fancy slicer. this actually works
# pretty well, despite no adaptation and not setting
# a specific min..max level.
return smoothed - numpy.mean(smoothed)
# look for min/max over this many samples.
# XXX not clear what the right value is.
win = int(slicewin * self.lorate)
z = smoothed
if (len(z) % win) != 0:
# trim z so it's a multiple of win long.
z = z[0:-(len(z)%win)]
zsplit = numpy.split(z, len(z)/win) # split into win-size pieces
maxes = numpy.amax(zsplit, axis=1) # max of each piece
mins = numpy.amin(zsplit, axis=1)
ii = numpy.arange(0, len(z), 1)
ii = ii / win
maxv = maxes[ii]
minv = mins[ii]
# smooth to avoid discontinuities at piece boundaries.
# XXX what window here?
if slicesmooth > 0.001:
maxv = smooth(maxv, int(slicesmooth * slicewin * self.lorate))
minv = smooth(minv, int(slicesmooth * slicewin * self.lorate))
if len(maxv) < len(smoothed):
maxv = numpy.append(maxv, maxv[0:(len(smoothed)-len(maxv))])
minv = numpy.append(minv, minv[0:(len(smoothed)-len(minv))])
elif len(maxv) > len(smoothed):
maxv = maxv[0:len(smoothed)]
minv = minv[0:len(smoothed)]
# there's much more low-amplitude than high-amplitude,
# so don't move the signal down so much.
# XXX the factor here is a bit arbitrary.
midv = minv + (maxv - minv) * slicethresh
sliced = numpy.subtract(smoothed, midv)
return sliced
# tm0 is UNIX time in seconds of first sample for sound card input.
# or time in seconds since start of .wav file.
def process1(self, s, tm0):
global smoothwin, topsecs, votewin
s = abs(s)
s = smooth(s, int(self.lorate * smoothwin))
# center on zero so that correlation works better,
# both for sync and later to decode bits.
# basically sets the slicing level to zero.
s = self.slice(s)
# turn sync[] into amplitudes at self.lorate.
syncsamples = numpy.array([])
bitmap = { }
bitmap[0] = self.mksyncbit(0.170, 1.0)
bitmap[1] = self.mksyncbit(0.470, 1.0)
bitmap[2] = self.mksyncbit(0.770, 1.0)
bitmap[-1] = self.mksyncbit(0.470, 0.0)
bitmap[-2] = numpy.repeat([-1], self.lorate) # no tone
for ss in sync:
sec = bitmap[ss]
syncsamples = numpy.append(syncsamples, sec)
# concatenate votewin copies of sync,
# hoping to get better alignment and
# be more likely to choose the correct minute boundary.
# s[] contains multiple minutes due to voting.
nsync = syncsamples
for i in range(1, int(round(len(s)/float(60*self.lorate)))-2):
nsync = numpy.append(nsync, syncsamples)
# for each second, how much does it look like the
# start of a minute?
i = 0
secs = [ ] # strength of correlation of sync sequence for this second.
secsi = [ ] # sample offset within second of strongest.
#ccc = numpy.correlate(s, nsync)
ccc = numpy.correlate(s[0:60*self.lorate+len(nsync)], nsync)
while i < 60*self.lorate and i + 61*self.lorate <= len(s):
cc = ccc[i:i+self.lorate]
mi = numpy.argmax(cc)
secs.append(cc[mi])
secsi.append(numpy.argmax(cc))
i += self.lorate
# sort the seconds, highest sync correlation first.
ranked = sorted(list(range(0, len(secs))), key = lambda i : -secs[i])
# accumulate [ Decode, votes ] pairs,
# to choose the best second offset.
allmins = [ ]
for sec in ranked[0:topsecs]:
off = sec*self.lorate + secsi[sec]
ss = s[off:off+(votewin*60*self.lorate)]
[ d, votes ] = self.process2(ss)
if d != None:
d.cardtime = tm0 + off/float(self.lorate)
allmins.append([ d, votes ])
if len(allmins) > 0:
# sort by votes
allmins = sorted(allmins, key = lambda dv : -dv[1])
[ d, votes ] = allmins[0]
if self.cb != None:
self.cb(d)
else:
ts = time.gmtime(int(d.cardtime))
fr = d.cardtime - int(d.cardtime)
frs = "%.3f" % (fr)
frs = frs[1:] # drop leading zero
print("%02d:%02d:%02d%s %s %d" % (ts.tm_hour, ts.tm_min, ts.tm_sec, frs, d.s(), votes))
sys.stdout.flush()
# s is strength of tone, self.lorate samples per second,
# rectified and smoothed.
# caller thinks a minute begins at s[0].
# return [ Decode, votes ]
def process2(self, s):
global votewin
da = [ ]
i = 0
while (i+1)*60*self.lorate <= len(s):
ss = s[i*60*self.lorate:(i+1)*60*self.lorate]
[ bits, strengths ] = self.demod(ss)
d = self.decode(bits)
d.strengths = strengths
if False and d.year == 2017 and d.day_of_year == 41:
print(d.s())
print(strengths)
sys.exit(1)
# we want to vote on individual bits, since if there
# are multiple wrong bits then voting on the entire
# time is unlikely to work e.g. if all 3 times have
# one bit wrong. but we have to reference later
# minutes back to a common base. so subtract
# and re-encode to bits.
m = d.tomin() - i
d1 = frommin(m)
# change time fields in place to preserve dst/dut/leap.
d.year = d1.year
d.day_of_year = d1.day_of_year
d.hour = d1.hour
d.minute = d1.minute
d.bits = d.encode()
da.append(d)
i += 1
# vote on each bit, weighted by demod()'s "strength".
bits = [ ]
total_votes = 0
total_strengths = 0.0
for i in range(0, 60):
if sync[i] == -1:
strengths = [ 0.0, 0.0, 0.0 ] # sum of strengths of 0s and 1s
votes = [ 0, 0, 0 ] # number of votes for 0s and 1s
for ii in range(len(da)):
#votes[da[ii].bits[i]] += 1
strengths[da[ii].bits[i]] += da[ii].strengths[i]
votes[da[ii].bits[i]] += 1
if strengths[1] > strengths[0]:
bits.append(1)
total_strengths += strengths[1]
total_votes += votes[1]
else:
bits.append(0)
total_strengths += strengths[0]
total_votes += votes[0]
else:
bits.append(0)
d = self.decode(bits)
# 2nd value here is total goodness of this decode,
# which process1() uses to pick the second offset
# at which this minute starts. it works better
# to use number of agreeing bits here, not
# total "strength".
return [ d, total_votes / float(len(da)) ]
#return [ d, total_strengths / float(len(da)) ]
# demodulate one second into 60 0/1 bits.
# returns [ bits, strengths ]
# strengths is a lame absolute metric of
# bit strength, used to weight the voting.
# XXX should estimate probability of correctness,
# from overall amplitude distributions.
def demod(self, s):
# process1() smoothed the rectified samples with
# a window this many seconds wide (e.g. 0.02 seconds).
global smoothwin
bits = [ ]
strengths = [ ]
for secno in range(0, 60):
# this bit's samples
a = s[secno*self.lorate:(secno+1)*self.lorate]
# measure known high and low amplitudes for
# comparison; 30..200 ms is always high,
# and 500..999 is always low (for a 0/1 bit).
# the only part that varies for 0 vs 1 is
# 200..500 ms.
# a[] is smoothed with a window of smoothwin seconds, so
# avoid areas where high/low might mix. assume smoothwin=0.02.
high = numpy.mean(a[int(0.050*self.lorate):int(0.180*self.lorate)])
low = numpy.mean(a[int(0.520*self.lorate):int(0.980*self.lorate)])
got = numpy.mean(a[int(0.220*self.lorate):int(0.480*self.lorate)])
gap = float(high - low)
if got > (low + high) / 2.0:
bits.append(1)
str = got - low
str /= gap
str = max(str, 0)
str = min(str, 1)
strengths.append(str)
else:
bits.append(0)
str = high - got
str /= gap
str = max(str, 0)
str = min(str, 1)
strengths.append(str)
return [ bits, strengths ]
# bits[] has 60 0/1/2 (2 means marker).
# decode bits into a Decode.
def decode(self, bits):
d = Decode()
d.bits = bits
# copy b/c we can turn 2's into 1's.
bits = bits[:]
for i in range(0, 60):
if bits[i] > 1:
bits[i] = 1
assert bits[i] == 0 or bits[i] == 1
d.dst1 = bits[2] == 1
d.leap = bits[3] == 1
# year, minutes, hours, day-of-year are BCD,
# least significant bit first.
d.year = 2000 + 10*d4(bits[51:55]) + d4(bits[4:8])
d.minute = d4(bits[10:14]) + 10*d3(bits[15:18])
d.hour = d4(bits[20:24]) + 10*d2(bits[25:27])
d.day_of_year = d4(bits[30:34]) + 10*d4(bits[35:39]) + 100*d2(bits[40:42])
d.dut = 0.1 * d3(bits[56:59])
if bits[50] == 0:
d.dut *= -1
d.dst2 = bits[55] == 1
return d
def gofile(self, filename, verbose):
self.openwav(filename, verbose)
count = 0 # count samples, to generate "time" for process.
while True:
buf = self.readwav()
if buf.size < 1:
break
self.process(buf, False, count / float(self.inrate))
count += len(buf)
self.process(numpy.array([]), True, count / float(self.inrate))
def openwav(self, filename, verbose):
self.wav = wave.open(filename)
self.wav_channels = self.wav.getnchannels()
self.wav_width = self.wav.getsampwidth()
self.inrate = self.wav.getframerate()
if verbose:
sys.stdout.write("file=%s chans=%d width=%d rate=%d\n" % (filename,
self.wav_channels,
self.wav_width,
self.inrate))
def readwav(self):
z = self.wav.readframes(self.inrate)
if self.wav_width == 1:
zz = numpy.fromstring(z, numpy.int8)
elif self.wav_width == 2:
zz = numpy.fromstring(z, numpy.int16)
else:
sys.stderr.write("oops wave_width %d" % (self.wav_width))
sys.exit(1)
if self.wav_channels == 1:
return zz
elif self.wav_channels == 2:
return zz[0::2] # left
else:
sys.stderr.write("oops wav_channels %d" % (self.wav_channels))
sys.exit(1)
def opencard(self, desc):
self.audio = weakaudio.new(desc, None)
self.inrate = self.audio.rate
def gocard(self):
while True:
[ buf, buf_time ] = self.audio.read()
if len(buf) > 0:
# buf_time is UNIX seconds of the last sample of buf[].
# convert to first sample.
tm = buf_time - len(buf) / float(self.inrate)
self.process(buf, False, tm)
# sleep so that samples accumulate, which makes
# resample() higher quality.
time.sleep(0.2)
def onebench(filename, year0, yearday0, hour0, minute0, minutes, verbose):
d0 = Decode()
d0.year = year0
d0.day_of_year = yearday0
d0.hour = hour0
d0.minute = minute0
da = [ ]
r = WWV()
r.cb = lambda d : da.append(d)
r.gofile(filename, False)
# we're not sure exactly where the first correct
# timestamp begins. so, for every second offset
# within a minute, tally up the number of wins
# and losses. we'll use the best.
secgood = [ ]
for off in range(0, 60):
ngood = 0
for m in range(0, minutes):
found = False
for d in da:
ss = int(round(d.cardtime))
ss = ss % 60
if ss >= off-1 and ss <= off+1:
if d.tomin() == d0.tomin() + m:
found = True
if found:
ngood += 1
secgood.append(ngood)
if verbose:
print("%s score %d of %d" % (filename, numpy.max(secgood), minutes))
return numpy.max(secgood)
def optimize():
vars = [
[ "votewin", [ 1, 3, 5, 10 ] ],
[ "filterwidth", [ 15, 20, 30 ] ],
[ "filterorder", [ 2, 3, 4 ] ],
[ "smoothwin", [ 0.015, 0.02, 0.025, 0.03, 0.05, 0.06, 0.07, 0.08, 0.1 ] ],
[ "topsecs", [ 1, 2, 4, 8, 16, 25 ] ],
[ "slicewin", [ 0, 2, 4, 8 ] ],
#[ "slicesmooth", [ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ] ],
#[ "slicethresh", [ 0.2, 0.225, 0.25, 0.27, 0.3 ] ],
]
sys.stdout.write("# ")
for v in vars:
sys.stdout.write("%s=%s " % (v[0], eval(v[0])))
sys.stdout.write("\n")
# warm up any caches, JIT, &c.
r = WWV()
r.cb = lambda d : 1
r.gofile("wwvx1.wav", False)
for v in vars:
for val in v[1]:
old = None
if "." in v[0]:
xglob = ""
else:
xglob = "global %s ; " % (v[0])
exec("%sold = %s" % (xglob, v[0]))
exec("%s%s = %s" % (xglob, v[0], val))
#sys.stdout.write("# ")
#for vx in vars:
# sys.stdout.write("%s=%s " % (vx[0], eval(vx[0])))
#sys.stdout.write("\n")
sc = 0
sc += onebench("wwvx2.wav", 2017, 41, 20, 55, 18, False)
sc += onebench("wwvx3.wav", 2017, 41, 21, 17, 60, False)
sc += onebench("wwvx4.wav", 2017, 41, 22, 25, 92, False)
sc += onebench("wwvx7.wav", 2017, 43, 21, 18, 50, False)
sc += onebench("wwvx8.wav", 2017, 43, 22, 15, 72, False)
sc += onebench("wwvx9.wav", 2017, 43, 23, 33, 51, False)
sc += onebench("wwvx10.wav", 2017, 44, 9, 19, 54, False)
exec("%s%s = old" % (xglob, v[0]))
sys.stdout.write("%s=%s : " % (v[0], val))
sys.stdout.write("%d\n" % (sc))
sys.stdout.flush()
def main():
if False:
optimize()
sys.exit(0)
if False:
total = 0
total += onebench("wwvx2.wav", 2017, 41, 20, 55, 18, True)
total += onebench("wwvx3.wav", 2017, 41, 21, 17, 60, True)
total += onebench("wwvx4.wav", 2017, 41, 22, 25, 92, True)
total += onebench("wwvx7.wav", 2017, 43, 21, 18, 50, True)
total += onebench("wwvx8.wav", 2017, 43, 22, 15, 72, True)
total += onebench("wwvx9.wav", 2017, 43, 23, 33, 51, True)
total += onebench("wwvx10.wav", 2017, 44, 9, 19, 54, True)
print("%d total" % (total))
sys.exit(0)
parser = weakargs.stdparse('Decode WWV.')
parser.add_argument("-file")
args = weakargs.parse_args(parser)
if (args.card == None) == (args.file == None):
parser.error("one of -card and -file are required")
if args.file != None:
r = WWV()
r.gofile(args.file, True)
sys.exit(0)
if args.card != None:
if args.cat != None:
hz = 15000000
cat = weakcat.open(args.cat)
cat.setf(0, hz)
print("Frequency set to %.1f MHz" % (hz / 1000000.0))
r = WWV()
r.opencard(args.card)
r.gocard()
sys.exit(0)
parser.error("one of -card, -file, or -levels is required")
sys.exit(1)
if __name__ == '__main__':
if False:
pfile = "cprof.out"
sys.stderr.write("jt65: cProfile -> %s\n" % (pfile))
import cProfile
import pstats
cProfile.run('main()', pfile)
p = pstats.Stats(pfile)
p.strip_dirs().sort_stats('time')
# p.print_stats(10)
p.print_callers()
else:
main()