-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTime.py
534 lines (395 loc) · 22.2 KB
/
Time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# from Connectivity import *
from PathSolution import *
from Distance import *
from scipy.io import savemat
from statistics import median_low
from copy import deepcopy
from math import inf
def max_tbv_as_constraint(sol:PathSolution):
# print(sol.mean_tbv)
if sol.info.min_visits > 1:
return sol.max_mean_tbv - 40
else:
return 0
def max_tbv_as_objective(sol:PathSolution):
# print(sol.mean_tbv)
if sol.info.min_visits > 1:
return sol.max_mean_tbv
else:
return 0
def calculate_max_visits(sol:PathSolution):
info = sol.info
xs, ys = get_real_paths(sol)
nvisits = calculate_nvisits_and_visit_times_and_tbv(xs, ys, info)[0]
return max(nvisits)
def nvisits_hard_constraint(sol:PathSolution):
info = sol.info
xs, ys = get_real_paths(sol)
nvisits = calculate_nvisits_and_visit_times_and_tbv(xs, ys, info)[0]
return max(nvisits)
def calculate_nvisits_and_visit_times_and_tbv(xs, ys, info:PathInfo):
number_of_nodes, time_slots = xs.shape
real_time_coords = np.empty(xs.shape, dtype=tuple)
real_time_cells = np.empty(xs.shape, dtype=int)
nvisits = np.zeros(info.number_of_cells, dtype=int)
visit_times = list(map(lambda x: [], np.empty(info.number_of_cells, dtype=list))) # Empty list of lists
time_between_visits = deepcopy(visit_times)
for node in range(number_of_nodes):
real_time_coords[node] = list(zip(xs[node],ys[node]))
real_time_cells[node] = list(map(lambda x: get_city(x, info.grid_size, info.cell_side_length), real_time_coords[node]))
for i in range(1,time_slots):
current_cell = real_time_cells[node][i]
if current_cell == -1:
continue
prev_cell = real_time_cells[node][i-1]
if current_cell != prev_cell:
# Update nvisits
nvisits[current_cell] += 1
# Update visit_times
visit_times[current_cell].append(i)
visit_times = list(map(lambda x: np.unique(x).tolist(), visit_times))
for cell_no, cell_visit_times in enumerate(visit_times):
# sorted_cell_visit_times = sorted(cell_visit_times)
# print(f"time_between_visits[cell_no]: {time_between_visits[cell_no]}")
# print(f"cell {cell_no} visit times: {cell_visit_times}")
for i in range(1,len(cell_visit_times)):
# print("->", cell_visit_times[i]-cell_visit_times[i-1])
time_between_visits[cell_no].append(cell_visit_times[i]-cell_visit_times[i-1])
if len(time_between_visits[cell_no])==0:
time_between_visits[cell_no] = [0]
# print(f"cell {cell_no} tbv: {time_between_visits[cell_no]}")
return nvisits, visit_times, time_between_visits
# print(f"nvisits: {nvisits}")
# print(f"visit_times: {visit_times}")
# print(f"tbv: {time_between_visits}")
def get_cartesion_drone_path(sol:PathSolution):
real_time_drone_mat = sol.real_time_path_matrix
real_time_cartesian_drone_dict = dict()
time_slot = len(real_time_drone_mat[0])+2
drone_no = 0
for drone_path in real_time_drone_mat:
cartesian_path = [[-1, -1]]
for city in drone_path:
cartesian_path.append(sol.get_coords(sol, city))
cartesian_path.append([-1,-1])
real_time_cartesian_drone_dict[drone_no] = cartesian_path
drone_no += 1
x_values = np.zeros((time_slot, sol.info.number_of_drones+1))
y_values = np.zeros((time_slot, sol.info.number_of_drones+1))
total_len = 0
path_start_points = [0]
for key in real_time_cartesian_drone_dict:
path = real_time_cartesian_drone_dict[key]
total_len += len(path)
path_start_points.append(total_len)
for time in range(time_slot):
coord = path[time]
x_values[time, key] = coord[0]
y_values[time, key] = coord[1]
path_start_points.pop(-1)
return x_values, y_values, path_start_points
def get_real_real_path(xs, ys, path_start_points):
n_drones = len(path_start_points)
lens = dict()
x = xs[:, 0]
for i in range(len(xs[1:])):
lens[i] = []
for n in range(n_drones):
x = xs[:,n]
el_prev = x[0]
interp_x = np.array([])
for i, el in enumerate(x[1:]):
step = 1 if el>=el_prev else -1
interp_mid = np.arange(el_prev*20, el*20+1, step) / 20
interp_x = np.concatenate((interp_x, interp_mid))
el_prev = el
lens[i].append(len(interp_mid))
y = ys[:,n]
el_prev = y[0]
interp_y = np.array([])
for i, el in enumerate(y[1:]):
step = 1 if el>=el_prev else -1
interp_mid = np.arange(el_prev*20, el*20+1, step) / 20
interp_y = np.concatenate((interp_y, interp_mid))
el_prev = el
lens[i].append(len(interp_mid))
max_lens = []
for i, key in enumerate(lens):
#print(lens[key], "\t \t", xs[i+1, :])
max_lens.append(max(lens[key]))
lens = dict()
for i in range(len(x[1:])):
lens[i] = []
final_interp_x = []
final_interp_y = []
for n in range(n_drones):
x = xs[:,n]
el_prev = x[0]
interp_x = np.array([])
for i, el in enumerate(x[1:]):
interp_mid = np.linspace(el_prev*20, el*20+1, max_lens[i]) / 20
interp_x = np.concatenate((interp_x, interp_mid))
el_prev = el
lens[i].append(len(interp_mid))
final_interp_x.append(interp_x)
y = ys[:,n]
el_prev = y[0]
interp_y = np.array([])
for i, el in enumerate(y[1:]):
# print("-->",max_lens[i])
interp_mid = np.linspace(el_prev*20, el*20+1, max_lens[i]) / 20
interp_y = np.concatenate((interp_y, interp_mid))
el_prev = el
lens[i].append(len(interp_mid))
final_interp_y.append(interp_y)
return np.array(final_interp_x), np.array(final_interp_y)
def get_real_paths(sol:PathSolution):
info = sol.info
# Take the drone with longest distance at every step, calculate time it takes, then apply linspace or arange to calculate realtime path for other drones as well
drone_path_matrix = sol.real_time_path_matrix[1:,:]
x_sink, y_sink = sol.get_coords(-1)
real_time_x_matrix = np.empty((info.number_of_drones, 0))
real_time_y_matrix = np.empty((info.number_of_drones, 0))
# vectorized_get_coords = np.vectorize(self.get_coords)
for i in range(drone_path_matrix.shape[1]-1):
current_cells = drone_path_matrix[:,i]
next_cells = drone_path_matrix[:,i+1]
current_x_coords, current_y_coords = np.array([sol.get_coords(x) for x in current_cells]).T
next_x_coords, next_y_coords = np.array([sol.get_coords(x) for x in next_cells]).T
dists = np.array([sol.info.D[current_cells[j], next_cells[j]] for j in range(sol.info.number_of_drones)])
dt = ceil(np.max(dists)/info.max_drone_speed)
x_mid = np.array([np.linspace(current_x_coords[j], next_x_coords[j], dt) for j in range(info.number_of_drones)])
y_mid = np.array([np.linspace(current_y_coords[j], next_y_coords[j], dt) for j in range(info.number_of_drones)])
real_time_x_matrix = np.hstack((real_time_x_matrix, x_mid))
real_time_y_matrix = np.hstack((real_time_y_matrix, y_mid))
sol.real_time_x_matrix = np.vstack((np.full((1,real_time_x_matrix.shape[1]), x_sink), real_time_x_matrix))
sol.real_time_y_matrix = np.vstack((np.full((1,real_time_y_matrix.shape[1]), y_sink), real_time_y_matrix))
# print(sol.real_time_x_matrix)
return sol.real_time_x_matrix, sol.real_time_y_matrix
# sync = sol.info.model != distance_soo_model
# info = sol.info
# time_steps = sol.real_time_path_matrix.shape[1]
# # Initialize path_matrix with condition
# path_matrix = sol.real_time_path_matrix
# # Initialize coordinate lists
# sol.x_coords_list = [np.array([]) for _ in range(info.number_of_drones)]
# sol.y_coords_list = [np.array([]) for _ in range(info.number_of_drones)]
# for i in range(1, time_steps):
# current_step_cells = path_matrix[1:, i-1]
# next_step_cells = path_matrix[1:, i]
# # Calculate Drone Speeds Based On Distance
# drone_dists = np.array([info.D[current_step_cells[j], next_step_cells[j]] for j in range(info.number_of_drones)])
# max_dist = np.max(drone_dists)
# step_time = max_dist / info.max_drone_speed
# drone_speeds = drone_dists / step_time if sync else np.full_like(drone_dists, info.max_drone_speed)
# current_step_coords = np.array(list(map(sol.get_coords, current_step_cells)))
# next_step_coords = np.array(list(map(sol.get_coords, next_step_cells)))
# coord_diffs = next_step_coords - current_step_coords
# thetas = np.arctan2(coord_diffs[:, 1], coord_diffs[:, 0])
# if sync:
# current_to_next_step_x_coords = [np.arange(current_step_coords[j, 0], next_step_coords[j, 0], drone_speeds[j] * np.cos(thetas[j])) if current_step_coords[j, 0] != next_step_coords[j, 0] else np.full(ceil(step_time), current_step_coords[j, 0]) for j in range(info.number_of_drones)]
# current_to_next_step_y_coords = [np.arange(current_step_coords[j, 1], next_step_coords[j, 1], drone_speeds[j] * np.sin(thetas[j])) if current_step_coords[j, 1] != next_step_coords[j, 1] else np.full(ceil(step_time), current_step_coords[j, 1]) for j in range(info.number_of_drones)]
# else:
# current_to_next_step_x_coords = [np.arange(current_step_coords[j, 0], next_step_coords[j, 0], drone_speeds[j] * np.cos(thetas[j])) if current_step_coords[j, 0] != next_step_coords[j, 0] else np.full(2, current_step_coords[j, 0]) for j in range(info.number_of_drones)]
# current_to_next_step_y_coords = [np.arange(current_step_coords[j, 1], next_step_coords[j, 1], drone_speeds[j] * np.sin(thetas[j])) if current_step_coords[j, 1] != next_step_coords[j, 1] else np.full(2, current_step_coords[j, 1]) for j in range(info.number_of_drones)]
# # Ensure matching lengths of coordinate arrays
# for j in range(info.number_of_drones):
# x_coords, y_coords = current_to_next_step_x_coords[j], current_to_next_step_y_coords[j]
# if len(x_coords) != len(y_coords):
# if len(x_coords) > len(y_coords):
# current_to_next_step_y_coords[j] = np.hstack((y_coords, np.full(len(x_coords) - len(y_coords), y_coords[-1])))
# else:
# current_to_next_step_x_coords[j] = np.hstack((x_coords, np.full(len(y_coords) - len(x_coords), x_coords[-1])))
# # Concatenate coordinates
# sol.x_coords_list = [current_to_next_step_x_coords[j] if i == 1 else np.hstack((sol.x_coords_list[j], current_to_next_step_x_coords[j])) for j in range(info.number_of_drones)]
# sol.y_coords_list = [current_to_next_step_y_coords[j] if i == 1 else np.hstack((sol.y_coords_list[j], current_to_next_step_y_coords[j])) for j in range(info.number_of_drones)]
# # Final adjustments and initialization of x_matrix and y_matrix
# x_sink, y_sink = sol.get_coords(-1)
# sol.time_slots = max(len(x) for x in sol.x_coords_list)
# sol.x_matrix = np.full((info.number_of_drones + 1, sol.time_slots), x_sink)
# sol.y_matrix = np.full((info.number_of_drones + 1, sol.time_slots), y_sink)
# for i in range(info.number_of_drones):
# sol.x_matrix[i + 1, :len(sol.x_coords_list[i])] = sol.x_coords_list[i]
# sol.y_matrix[i + 1, :len(sol.y_coords_list[i])] = sol.y_coords_list[i]
# sol.mission_time = sol.x_matrix.shape[1]
# return sol.x_matrix, sol.y_matrix
def get_path_coords(current_x, current_y, next_x, next_y, speed, theta, num_points):
"""
Compute the real-time coordinates between two points (current_x, current_y) and (next_x, next_y)
given the speed and angle of movement.
"""
if current_x != next_x:
x_coords = np.linspace(current_x, next_x, num_points)
else:
x_coords = np.full(num_points, current_x)
if current_y != next_y:
y_coords = np.linspace(current_y, next_y, num_points)
else:
y_coords = np.full(num_points, current_y)
return x_coords, y_coords
'''
def get_real_paths(sol):
sync = sol.info.model != distance_soo_model
info = sol.info
time_steps = sol.real_time_path_matrix.shape[1]
path_matrix = np.where(sol.real_time_path_matrix != -1, sol.real_time_path_matrix % info.number_of_cells, sol.real_time_path_matrix)
mission_time = 0
# Preallocate coordinate lists
sol.x_coords_list = [[] for _ in range(info.number_of_drones)]
sol.y_coords_list = [[] for _ in range(info.number_of_drones)]
# Extract coordinates
coords = np.array([sol.get_coords(i) for i in range(info.number_of_cells)])
for i in range(1, time_steps):
current_step_cells, next_step_cells = path_matrix[1:, i-1], path_matrix[1:, i]
# Calculate distances and times
current_step_coords = coords[current_step_cells]
next_step_coords = coords[next_step_cells]
coord_diffs = next_step_coords - current_step_coords
thetas = np.arctan2(coord_diffs[:, 1], coord_diffs[:, 0])
drone_dists = np.linalg.norm(coord_diffs, axis=1)
max_dist = np.max(drone_dists)
step_time = max_dist / info.max_drone_speed
mission_time += step_time
drone_speeds = drone_dists / step_time if sync else np.full(info.number_of_drones, info.max_drone_speed)
for j in range(info.number_of_drones):
current_x, current_y = current_step_coords[j]
next_x, next_y = next_step_coords[j]
speed = drone_speeds[j]
theta = thetas[j]
num_points = ceil(step_time) if sync else 2
x_coords, y_coords = get_path_coords(current_x, current_y, next_x, next_y, speed, theta, num_points)
sol.x_coords_list[j].extend(x_coords)
sol.y_coords_list[j].extend(y_coords)
sol.mission_time = mission_time if sync else sol.longest_subtour / info.max_drone_speed
sol.drone_timeslots = [len(x) for x in sol.x_coords_list]
sol.time_slots = max(sol.drone_timeslots)
# Initialize xy matrix
x_sink, y_sink = sol.get_coords(-1)
sol.x_matrix = np.full((info.number_of_drones + 1, sol.time_slots), x_sink)
sol.y_matrix = np.full((info.number_of_drones + 1, sol.time_slots), y_sink)
for i in range(info.number_of_drones):
drone_time = sol.drone_timeslots[i]
sol.x_matrix[i + 1, :drone_time] = sol.x_coords_list[i]
sol.y_matrix[i + 1, :drone_time] = sol.y_coords_list[i]
return sol.x_matrix, sol.y_matrix
'''
'''def get_real_paths(sol:PathSolution):
sync = True if sol.info.model!=distance_soo_model else False
info = sol.info
time_steps = sol.real_time_path_matrix.shape[1]
# path_matrix = sol.real_time_path_matrix % info.number_of_cells
path_matrix = np.where(sol.real_time_path_matrix != -1, sol.real_time_path_matrix % info.number_of_cells, sol.real_time_path_matrix)
# path_matrix = sol.real_time_path_matrix
# print("Original Path Matrix:",sol.real_time_path_matrix)
# print("Path Matrix:",path_matrix)
mission_time = 0
for i in range(1, time_steps):
current_step_cells , next_step_cells = path_matrix[1:,i-1].tolist() , path_matrix[1:,i].tolist()
# Calculate Drone Speeds Based On Distance
drone_dists = np.array([info.D[current_step_cells[j],next_step_cells[j]] for j in range(info.number_of_drones)])# Calculate Distance for Each Drone
max_dist = max(drone_dists)
step_time = max_dist / info.max_drone_speed
mission_time += step_time
# print("-->",drone_dists, step_time)
drone_speeds = drone_dists / step_time if sync else [info.max_drone_speed]*len(drone_dists)
# print("->",drone_speeds)
# print(f"Drone Dists: {drone_dists}\nStep Time: {step_time}\nDrone Speeds: {drone_speeds}")
current_step_coords = list(map(sol.get_coords, current_step_cells))
next_step_coords = list(map(sol.get_coords, next_step_cells))
coord_diffs = [next_step_coords[j] - current_step_coords[j] for j in range(info.number_of_drones)]
thetas = [atan2(j[1],j[0]) for j in coord_diffs]
# Changes in current_to_next_step !!!
if sync:
current_to_next_step_x_coords = [ np.arange(current_step_coords[j][0], next_step_coords[j][0], drone_speeds[j] * cos(thetas[j])) if current_step_coords[j][0] != next_step_coords[j][0] else np.array([current_step_coords[j][0]]*ceil(step_time)) for j in range(info.number_of_drones) ]
current_to_next_step_y_coords = [ np.arange(current_step_coords[j][1], next_step_coords[j][1], drone_speeds[j] * sin(thetas[j])) if current_step_coords[j][1] != next_step_coords[j][1] else np.array([current_step_coords[j][1]]*ceil(step_time)) for j in range(info.number_of_drones) ]
else:
current_to_next_step_x_coords = [ np.arange(current_step_coords[j][0], next_step_coords[j][0], drone_speeds[j] * cos(thetas[j])) if current_step_coords[j][0] != next_step_coords[j][0] else np.array([current_step_coords[j][0]]*2) for j in range(info.number_of_drones) ]
current_to_next_step_y_coords = [ np.arange(current_step_coords[j][1], next_step_coords[j][1], drone_speeds[j] * sin(thetas[j])) if current_step_coords[j][1] != next_step_coords[j][1] else np.array([current_step_coords[j][1]]*2) for j in range(info.number_of_drones) ]
# if i < 10:
# print(f"Step {i}")
# print(f"current step cells: {current_step_cells}, next step cells: {next_step_cells}")
# print(f"current_to_next_step_x_coords: {current_to_next_step_x_coords}, current_to_next_step_y_coords: {current_to_next_step_y_coords}")
for j in range(info.number_of_drones):
x_coords, y_coords = current_to_next_step_x_coords[j], current_to_next_step_y_coords[j]
if len(x_coords) != len(y_coords):
xy_diff = abs(len(x_coords) - len(y_coords))
if len(x_coords) > len(y_coords): # Fill y
current_to_next_step_y_coords[j] = np.hstack((current_to_next_step_y_coords[j], np.array([y_coords[-1]]*xy_diff)))
else: # Fill x
current_to_next_step_x_coords[j] = np.hstack((current_to_next_step_x_coords[j], np.array([x_coords[-1]]*xy_diff)))
else:
continue
# if i==1:
# print(f"X - Current to Next Step: {current_to_next_step_x_coords}\nY - Current to Next Step: {current_to_next_step_y_coords}")
sol.x_coords_list = [current_to_next_step_x_coords[j] if i==1 else np.hstack((sol.x_coords_list[j],current_to_next_step_x_coords[j])) for j in range(info.number_of_drones)]
sol.y_coords_list = [current_to_next_step_y_coords[j] if i==1 else np.hstack((sol.y_coords_list[j],current_to_next_step_y_coords[j])) for j in range(info.number_of_drones)]
sol.mission_time = mission_time if sync else sol.longest_subtour/info.max_drone_speed
sol.drone_timeslots = [len(x) for x in sol.x_coords_list]
sol.time_slots = max(sol.drone_timeslots)
# Initialize xy matrix
x_sink,y_sink = sol.get_coords(-1)
sol.x_matrix = np.full((info.number_of_drones + 1, sol.time_slots), x_sink) # Nd+1 rows in order to incorporate base station
sol.y_matrix = sol.x_matrix.copy()
# sol.realtime_real_time_path_matrix = sol.x_matrix.copy()
# sol.realtime_real_time_path_matrix.astype(int)
# sol.realtime_real_time_path_matrix[:, :] = -1
# interpolated_path_dict = dict()
# interpolated_path_max_len = 0
# print(f"path matrix: {sol.real_time_path_matrix}")
# print(f"x_coords_list: {sol.x_coords_list}\ny_coords_list: {sol.y_coords_list}")
for i in range(info.number_of_drones):
sol.x_matrix[i + 1] = np.hstack((sol.x_coords_list[i], np.array([x_sink] * (sol.time_slots - sol.drone_timeslots[i]))))
sol.y_matrix[i + 1] = np.hstack((sol.y_coords_list[i], np.array([y_sink] * (sol.time_slots - sol.drone_timeslots[i]))))
return sol.x_matrix, sol.y_matrix
'''
def get_real_connectivity_matrix(real_x, real_y, sol:PathSolution):
info = sol.info
comm_range = info.comm_cell_range * info.cell_side_length
number_of_nodes, time_steps = real_x.shape
real_connectivity_matrix = np.zeros((time_steps, number_of_nodes, number_of_nodes))
for step in range(real_x.shape[1]):
real_x_coords, real_y_coords = real_x[:,step], real_y[:,step]
for node_1 in range(number_of_nodes):
node_1_x_coord, node_1_y_coord = real_x_coords[node_1], real_y_coords[node_1]
# node_1_cell = sol.get_city([node_1_x_coord,node_1_y_coord])
for node_2 in range(node_1+1, info.number_of_nodes):
node_2_x_coord, node_2_y_coord = real_x_coords[node_2], real_y_coords[node_2]
# node_2_cell = sol.get_city([node_2_x_coord,node_2_y_coord])
# print( "-->", (node_1_x_coord - node_2_x_coord)**2)
if sqrt( (node_1_x_coord - node_2_x_coord)**2 + (node_1_y_coord - node_2_y_coord)**2 ) <= comm_range:
# if info.D[node_1_cell, node_2_cell] <= comm_range:
real_connectivity_matrix[step, node_1, node_2] = 1
return real_connectivity_matrix
def calculate_time_penalty(sol:PathSolution):
return get_visit_time_variance(sol) + get_max_visits(sol) + get_min_time_between_visits_variance(sol)
def get_visit_time_variance(sol:PathSolution):
if not sol.cell_nvisits :
calculate_visit_times(sol)
return np.var(sol.cell_nvisits)
def get_max_visits(sol:PathSolution):
if not sol.cell_nvisits :
calculate_visit_times(sol)
return max(sol.cell_nvisits) - sol.info.max_visits
def calculate_visit_times(sol:PathSolution):
sol.cell_nvisits = [len(sol.cell_visit_steps[i]) for i in range(sol.info.number_of_cells)]
return sol.cell_nvisits
def get_min_time_between_visits_variance(sol:PathSolution):
if not sol.min_tbv:
get_min_time_between_visits(sol)
return np.var(sol.min_tbv)
def get_min_time_between_visits(sol:PathSolution):
if not sol.tbv:
calculate_time_between_visits(sol)
sol.min_tbv = [min(sol.tbv[i]) for i in range(sol.info.Nc)]
return sol.min_tbv
def calculate_time_between_visits(sol:PathSolution):
info = sol.info
tbv = dict()
for i in range(info.Nc):
tbv[i] = [] # Initialize tbv for every cell
for j in range(1,len(sol.cell_visit_steps[i])):
tbv[i].append( sol.cell_visit_steps[i][j] - sol.cell_visit_steps[i][j-1] )
if len(tbv[i])==0: # For cells only visited once
tbv[i].append(0)
sol.tbv = tbv
return sol.tbv