This repository has been archived by the owner on Oct 10, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConnectivity.py
193 lines (130 loc) · 6.5 KB
/
Connectivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
from collections import deque
from PathSolution import PathSolution
# ISLAM'S DEFINITIONS
def calculate_connectivity_to_base_percentage_matrix(sol : PathSolution):
info = sol.info
connectivity_to_base= sol.connectivity_to_base_matrix
time_slots = sol.time_slots
connectivity_to_base_percentage = np.zeros(time_slots)
for time in range(time_slots):
connectivity_to_base_percentage[time] = sum(connectivity_to_base[time, 1:])/(info.number_of_drones)
return connectivity_to_base_percentage
def calculate_percentage_connectivity(sol : PathSolution):
info = sol.info
connectivity_to_base_percentage = calculate_connectivity_to_base_percentage_matrix(sol)
return -np.mean(connectivity_to_base_percentage[::1]) # sol.info.connectivity_period (after second :)
#####################################################################################################
def BFS(adj, sol:PathSolution):
v = sol.info.Nd+1
ctb = []
start = 0
# Visited vector to so that a
# vertex is not visited more than
# once Initializing the vector to
# false as no vertex is visited at
# the beginning
visited = [False] * (sol.info.Nd+1)
q = [start]
# Set source as visited
visited[start] = True
while q:
vis = q[0]
# Print current node
ctb.append(vis)
q.pop(0)
# For every adjacent vertex to
# the current vertex
for i in range(v):
if (adj[vis][i] == 1 and
(not visited[i])):
# Push the adjacent node
# in the queue
q.append(i)
# set
visited[i] = True
return ctb
# def calculate_percentage_connectivity(sol:PathSolution):
# if not sol.percentage_connectivity :
# num_connected_drones_to_base = connected_nodes(sol, 0)
# sol.percentage_connectivity = 100 * sum(num_connected_drones_to_base) / (len(num_connected_drones_to_base) * sol.info.number_of_drones)
# return -sol.percentage_connectivity
# # return (sum(num_connected_drones_to_base) / (len(num_connected_drones_to_base) * info.Nd)) * 100
def calculate_total_maxDisconnectedTime(sol:PathSolution):
if not sol.disconnected_time_steps:
calculate_disconnected_timesteps(sol)
sol.total_maxDisconnectedTime = sum(sol.max_disconnected_timesteps)
return sol.total_maxDisconnectedTime
def calculate_max_maxDisconnectedTime(sol:PathSolution):
if sol.disconnected_time_steps is not None:
# if not sol.disconnected_time_steps:
calculate_disconnected_timesteps(sol)
sol.max_maxDisconnectedTime = max(sol.disconnected_time_steps)
return sol.max_maxDisconnectedTime
def calculate_mean_maxDisconnectedTime(sol:PathSolution):
if not sol.disconnected_time_steps:
calculate_disconnected_timesteps(sol)
sol.mean_maxDisconnectedTime = np.mean(sol.disconnected_time_steps)
return sol.mean_maxDisconnectedTime
# --------------------------------------------------------------------------------------------------------------
# Functions below are used in calculating connectivity related objective functions and constraints written above
# --------------------------------------------------------------------------------------------------------------
def calculate_disconnected_timesteps(sol:PathSolution):
# Finds the maximum disconnected timesteps for each drone
info = sol.info
time_steps = sol.real_time_path_matrix.shape[1]
disconnected_timesteps_matrix = np.zeros((info.number_of_drones, sol.connectivity_matrix.shape[0]), dtype=int)
drone_total_disconnected_timesteps = np.zeros(info.number_of_drones, dtype=int)
for i in range(info.number_of_drones):
# print(disconnected_timesteps_matrix[i].shape, connected_nodes(sol,i + 1))
disconnected_timesteps_matrix[i] = connected_nodes(sol,i + 1) # To account for skipping the base station # 0,1 , 1,2 ... 7,8
drone_total_disconnected_timesteps[i] = len(np.where(disconnected_timesteps_matrix[i] == 0)[0])
sol.disconnected_time_steps = drone_total_disconnected_timesteps
return sol.disconnected_time_steps
# sol.total_disconnected_timesteps = len(np.where(disconnected_timesteps_matrix == 0)[0]) # Total timesteps where a drone is disconnected
# sol.max_disconnected_timesteps = max(drone_total_disconnected_timesteps)
def dfs(connectivity_matrix, node, visited, component):
visited[node] = True
component.append(node)
for neighbor, connected in enumerate(connectivity_matrix[node]):
if connected == 1 and not visited[neighbor]:
dfs(connectivity_matrix, neighbor, visited, component)
def connected_components(connectivity_matrix):
n = len(connectivity_matrix)
visited = [False] * n
components = []
for node in range(n):
if not visited[node]:
component = []
dfs(connectivity_matrix, node, visited, component)
components.append(component)
return components
def connected_nodes(sol:PathSolution, start_node):
# start node: The node that we calculate connectivity to
info = sol.info
num_nodes = info.number_of_nodes
num_connected_drones = np.zeros(sol.connectivity_matrix.shape[0], dtype=int)
for i in range(sol.connectivity_matrix.shape[0]):
connectivity_matrix = sol.connectivity_matrix[i]
# num_nodes = len(connectivity_matrix)
visited = [False] * num_nodes
queue = deque([start_node])
connected_count = 0
# print(f"visited: {visited}")
# print(f"start node: {start_node}")
visited[start_node] = True # Mark start node as visited
while queue:
node = queue.popleft()
connected_count += 1
for j in range(num_nodes):
if connectivity_matrix[node][j] != 0 and not visited[j]:
queue.append(j)
visited[j] = True # Mark the connected node as visited
num_connected_drones[i] = connected_count - 1
# print("---------------------------------------------------------")
# print(f"step {i}")
# print("---------------------------------------------------------")
# print(f"Connectivity Matrix:\n{connectivity_matrix}")
# print(f"Number of nodes connected to node {start_node}: {num_connected_drones[i]}")
return num_connected_drones
# return connected_count - 1 # Subtract 1 because start node is included in count