This repository has been archived by the owner on Oct 10, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPathMutation.py
146 lines (109 loc) · 5.52 KB
/
PathMutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
from pymoo.core.mutation import Mutation
from pymoo.operators.crossover.ox import random_sequence
from pymoo.operators.mutation.inversion import inversion_mutation
from scipy.spatial import distance
from typing import List, Dict
import random
from copy import copy, deepcopy
from PathSolution import *
from PathInfo import *
from PathProblem import *
class PathMutation(Mutation):
def __init__(self, prob_random_swap=0.6, num_random_swaps=1,
prob_inversion=1, num_inversions=1,
prob_scramble=0.3, num_scrambles=1) -> None:
super().__init__()
self.prob_random_swap = prob_random_swap
self.num_random_swaps = num_random_swaps
self.prob_inversion = prob_inversion
self.num_inversions = num_inversions
self.prob_scramble = prob_scramble
self.num_scrambles = num_scrambles
def _do(self, problem : PathProblem, X, **kwargs):
Y = X.copy()
for i, y in enumerate(X):
sol : PathSolution = y[0]
start_points = sol.start_points
path = np.copy(sol.path)
mut_path = path
# print("Original Start Points:",start_points)
if np.random.random() <= self.prob_scramble:
for _ in range(self.num_scrambles):
seq = random_sequence(len(path))
random.shuffle(mut_path[seq[0]:seq[1]])
if np.random.random() <= self.prob_inversion:
for _ in range(self.num_inversions):
seq = random_sequence(len(path))
mut_path = inversion_mutation(mut_path, seq, inplace=True)
if np.random.random() <= self.prob_random_swap:
for _ in range(self.num_random_swaps):
seq = random_sequence(len(path))
temp = path[seq[0]]
mut_path[seq[0]] = mut_path[seq[1]]
mut_path[seq[1]] = temp
mut_start_points = np.copy(start_points)
prob = 1 / (len(start_points)-1) if len(start_points) > 1 else 0
# random_start_points = random_start_points_from_ranges(problem.start_points_ranges, problem.number_of_drones)
for j in range(1, len(start_points)):
if np.random.random() <= prob:
randomStart = np.random.randint(1, len(path))
if randomStart not in mut_start_points:
mut_start_points[j] = randomStart
sorted_mut_start_points = np.sort(mut_start_points)
# print("Mutated Start Points:",sorted_mut_start_points)
Y[i][0] = PathSolution(mut_path, sorted_mut_start_points, problem.info)
return Y
'''
class PathMutation(Mutation):
def __init__(self, prob=1) -> None:
super().__init__()
self.prob = prob
def _do(self, problem, X, **kwargs):
Y = X.copy()
for i, y in enumerate(X):
sol : PathSolution = y[0]
start_points = sol.start_points.copy()
path = sol.path.copy()
mut_path = path.copy()
mut_start_points = start_points.copy()
start, end = seq = random_sequence(len(mut_path))
# Path Mutations
# Swap Mutation
if random.uniform(0,1) <= 0.5:
mut_path[start],mut_path[end] = mut_path[end],mut_path[start] # Apply swap
# Inversion Mutation
else:
mut_path = inversion_mutation(path, seq, inplace=True)
# Start Points Mutation
if random.uniform(0, 1) <= 0.5:
random_index = random.randint(1,len(start_points)-2)
# print(f"random index: {random_index}")
# print(f"pre mutation: {mut_start_points[random_index]}")
if mut_start_points[random_index] - mut_start_points[random_index-1] < int(round(problem.info.number_of_cells/problem.info.number_of_drones)):
mut_start_points[random_index] = mut_start_points[random_index-1] + int(round((mut_start_points[random_index+1] - mut_start_points[random_index-1])/2))
# print(f"post mutation: {mut_start_points[random_index]}")
if mut_start_points[random_index] - mut_start_points[random_index-1] >= int(round(problem.info.number_of_cells/problem.info.number_of_drones)):
mut_start_points[random_index] = mut_start_points[random_index-1] + int(round((mut_start_points[random_index]-mut_start_points[random_index-1])/2))
# print(f"Mutated path: {mut_path}")
# print(f"Mutated start points: {mut_start_points}")
# print(f"Mutated start points: {sorted_mut_start_points}")
Y[i][0] = PathSolution(mut_path, mut_start_points, problem.info)
return Y
'''
'''
seq = random_sequence(len(path))
mut_path = inversion_mutation(path, seq, inplace=True)
# mut_start_points = np.copy(start_points)
mut_start_points = start_points.copy()
prob = 1 / (len(start_points) - 1) if len(start_points) > 1 else 0
# random_start_points = random_start_points_from_ranges(problem.start_points_ranges, problem.number_of_drones)
for j in range(1, len(start_points)):
if np.random.random() <= prob:
randomStart = np.random.randint(1, len(path))
if randomStart not in mut_start_points:
mut_start_points[j] = randomStart
# sorted_mut_start_points = np.sort(mut_start_points)
mut_start_points.sort()
sorted_mut_start_points = mut_start_points
'''