Skip to content

Latest commit

 

History

History
59 lines (54 loc) · 2.38 KB

README.md

File metadata and controls

59 lines (54 loc) · 2.38 KB

Super Resolution using GANs

Requirements

pip install -r requirements.txt

Usage:

  • Change parameters and directories according to your system (recommendation - do not change) in params.yaml.
  • Setup the Directory named Results in the root directory.
  • Make sure you have DVC initialized in the root directory
    You can do it with the command:
dvc init
  • Add data\train & data\val for data tracking in dvc by using command: For Windows-
dvc add data\train\HR
dvc add data\train\LR
dvc add data\validation\HR
dvc add data\validation\LR

For Linux-

dvc add data/train/HR
dvc add data/train/LR
dvc add data/validation/HR
dvc add data/validation/LR
  • Finally, run:
dvc repro
  • Trained models will be saved in saved_models directory.
  • Results will be saved in Results\present_datatime directory with name present_time_result.png.

Todo:

  • Integrate mlflow for better tracking
  • Create webapp
  • Deployment

References:

Warning: Do not try to change dvc.lock file and .dvc directory