-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_dataset.py
190 lines (162 loc) · 9.86 KB
/
index_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
# @Time : 2024/4/17 11:11
# @Author : Karry Ren
""" The torch.Dataset of CSI300 index dataset.
After the preprocessing raw CSI300 index dataset (download from web) by
run `python index_preprocess.py` you will get the following CSI300 index dataset directory:
INDEX_DATASET_PATH/
├── Train
├── 1_day_label.csv
├── 1_minute.csv
├── 5_minutes.csv
├── 15_minutes.csv
├── 1_hour.csv
└── 1_day.csv
├── Valid
└── Test
In this dataset:
- during `__init__()`, we will READ all `.csv` files of multi-granularity data to memory.
- during `__getitem__()`, we will READ 1 item with multi-granularity data and lag it by `DAY` and do the Z-Score normalization.
"""
from torch.utils import data
import pandas as pd
import numpy as np
class INDEXDataset(data.Dataset):
""" The torch.Dataset of CSI300 index dataset. """
def __init__(self, root_path: str, data_type: str = "Train", time_steps: int = 2, need_norm: bool = True):
""" The init function of INDEXDataset. Will READ all `.csv` files of multi-granularity data to memory.
For this dataset, the task is predicting the next day index return, so let the daily data be core !!
:param root_path: the root path of CSI300 index dataset
:param data_type: the data_type of dataset, you have 3 choices now:
- "Train" for train dataset
- "Valid" for valid dataset
- "Test" for test dataset
:param time_steps: the time steps (lag steps)
:param need_norm: whether to normalize the data
"""
assert data_type in ["Train", "Valid", "Test"], "data_type ERROR !"
# ---- Step 0. Set the params ---- #
self.T = time_steps # time steps (seq len)
needed_features = ["OPEN", "HIGH", "LOW", "CLOSE", "VOLUME", "AMT"]
self.need_norm = need_norm # whether to normalize the lob data
# ---- Step 2. Read the label and feature ---- #
self.label = pd.read_csv(f"{root_path}/{data_type}/1_day_label.csv")[["LABEL"]].values # label, shape=(T, 1)
self.mg_features_list_dict = {
"feature_1_day": pd.read_csv(f"{root_path}/{data_type}/1_day.csv")[needed_features].values,
"feature_1_hour": pd.read_csv(f"{root_path}/{data_type}/1_hour.csv")[needed_features].values,
"feature_15_minutes": pd.read_csv(f"{root_path}/{data_type}/15_minutes.csv")[needed_features].values,
"feature_5_minute": pd.read_csv(f"{root_path}/{data_type}/5_minutes.csv")[needed_features].values,
"feature_1_minute": pd.read_csv(f"{root_path}/{data_type}/1_minute.csv")[needed_features].values
} # features key-value pair, each item of dict is a feature data
# ---- Step 3. Get the total num of date
self.total_day_num = len(self.label) # the total number of days
def __len__(self):
""" Get the length of dataset. """
return self.total_day_num
def __getitem__(self, idx: int):
""" Get the item based on idx, and lag the item.
return: item_data (one lagged day sample)
- `mg_features`: the multi-granularity (5 kinds of granularity) features of CSI300 index dataset, the format is:
{
"g1": , shape=(time_steps, 1, 6), # feature_1_day
"g2": , shape=(time_steps, 4, 6), # feature_1_hour
"g3": , shape=(time_steps, 16, 1), # feature_15_minutes
"g4": , shape=(time_steps, 48, 1), # feature_5_minutes
"g5": , shape=(time_steps, 240, 1) # feature_1_minute
} shape is (T, K^g, D), please make sure REMEMBER the true time period of each granularity !!!
- `label`: the return label, shape=(1, )
- `weight`: the weight, shape=(1, )
"""
# ---- Compute the index pair day_idx to locate data ---- #
day_idx = idx # get the day index to locate the day of daily data
hour_1_idx = (day_idx + 1) * 4 - 1 # get the 1-hour index
minute_15_idx = (day_idx + 1) * 16 - 1 # get the 15 minutes index
minute_5_idx = (day_idx + 1) * 48 - 1 # get the 5 minutes index
minute_1_idx = (day_idx + 1) * 240 - 1 # get the 1-minute index
# ---- Get the multi-granularity features, label and weight ---- #
# feature dict, each item is a list of ndarray with shape=(time_steps, feature_shape)
mg_features_dict = {"g1": None, "g2": None, "g3": None, "g4": None, "g5": None}
# meaningless data, features are made to all zeros, erasing the front and tail data
if day_idx < self.T - 1 or day_idx >= self.total_day_num - 2:
# set features, all zeros, shape is different from granularity to granularity
mg_features_dict["g1"] = np.zeros((self.T, 1, 6)) # 1_day granularity
mg_features_dict["g2"] = np.zeros((self.T, 4, 6)) # 1_hour granularity
mg_features_dict["g3"] = np.zeros((self.T, 16, 6)) # 15_minutes granularity
mg_features_dict["g4"] = np.zeros((self.T, 48, 6)) # 5_minutes granularity
mg_features_dict["g5"] = np.zeros((self.T, 240, 6)) # 1_minute granularity
# `label = 0.0` for loss computation, shape=(1)
label = np.zeros(1)
# `weight = 0.0` means data is meaningless, shape=(1)
weight = np.zeros(1)
# meaningful data, load the true feature and label
else:
# load features, shape is based on granularity, (T, K^g, D)
mg_features_dict["g1"] = self.mg_features_list_dict[
"feature_1_day"][day_idx - self.T + 1:day_idx + 1].reshape(self.T, 1, 6)
mg_features_dict["g2"] = self.mg_features_list_dict[
"feature_1_hour"][hour_1_idx - self.T * 4 + 1:hour_1_idx + 1].reshape(self.T, 4, 6)
mg_features_dict["g3"] = self.mg_features_list_dict[
"feature_15_minutes"][minute_15_idx - self.T * 16 + 1:minute_15_idx + 1].reshape(self.T, 16, 6)
mg_features_dict["g4"] = self.mg_features_list_dict[
"feature_5_minute"][minute_5_idx - self.T * 48 + 1:minute_5_idx + 1].reshape(self.T, 48, 6)
mg_features_dict["g5"] = self.mg_features_list_dict[
"feature_1_minute"][minute_1_idx - self.T * 240 + 1:minute_1_idx + 1].reshape(self.T, 240, 6)
# get the label, shape=(1, )
label = self.label[day_idx]
# set `the weight = 1`, shape=(1, )
weight = np.ones(1)
# ---- Do the Z-Score Normalization ---- #
if self.need_norm:
for g in ["g1", "g2", "g3", "g4", "g5"]:
mg_feature = mg_features_dict[g] # get feature
# norm the price
price_mean = mg_feature[:, :, :4].mean() # compute the mean, shape=(1)
price_std = mg_feature[:, :, :4].std() # compute the std, shape=(1)
mg_feature[:, :, :4] = (mg_feature[:, :, :4] - price_mean) / (price_std + 1e-5)
# norm the volume & amt
va_mean = mg_feature[:, :, 4:].mean(axis=(0, 1), keepdims=True) # compute the mean, shape=(1, 1, 2)
va_std = mg_feature[:, :, 4:].std(axis=(0, 1), keepdims=True) # compute the mean, shape=(1, 1, 2)
mg_feature[:, :, 4:] = (mg_feature[:, :, 4:] - va_mean) / (va_std + 1e-5)
# set back
mg_features_dict[g] = mg_feature
# ---- Construct item data ---- #
item_data = {
"mg_features": mg_features_dict,
"label": label,
"weight": weight
}
return item_data
if __name__ == "__main__": # a demo using INDEXDataset
INDEX_DATASET_PATH = "../../Data/CSI300_index_dataset/dataset"
data_set = INDEXDataset(INDEX_DATASET_PATH, data_type="Train", time_steps=2, need_norm=False)
for i in range(1, len(data_set) - 2):
item_data = data_set[i]
g1_data = item_data["mg_features"]["g1"]
g2_data = item_data["mg_features"]["g2"]
g3_data = item_data["mg_features"]["g3"]
g4_data = item_data["mg_features"]["g4"]
g5_data = item_data["mg_features"]["g5"]
g_data_list = [g1_data, g2_data, g3_data, g4_data]
for g_idx, g_data in enumerate(g_data_list):
assert (g_data[:, 0, 0] == g5_data[:, 0, 0]).all(), f"g{(g_idx + 1)} error !! OPEN error !!"
assert (g_data[:, :, 1].max(axis=1) == g5_data[:, :, 1].max(axis=1)).all(), f"g{(g_idx + 1)} error !! HIGH error !!"
assert (g_data[:, :, 2].min(axis=1) == g5_data[:, :, 2].min(axis=1)).all(), f"g{g_idx + 1} error !! LOW error !!"
assert (g_data[:, -1, 3] == g5_data[:, -1, 3]).all(), f"g{g_idx + 1} error !! CLOSE error !!"
assert ((g_data[:, :, 4].sum(axis=1) - g5_data[:, :, 4].sum(axis=1)) / g5_data[:, :, 4].sum(
axis=1) < 1e-3).all(), f"g{g_idx + 1} error !! VOLUME error !!"
assert ((g_data[:, :, 5].sum(axis=1) - g5_data[:, :, 5].sum(axis=1)) / g5_data[:, :, 5].sum(
axis=1) < 1e-3).all(), f"g{g_idx + 1} error !! AMT error !!"
print(g1_data, g2_data, g3_data, g4_data, g5_data)
print(item_data["label"])
break
data_set = INDEXDataset(INDEX_DATASET_PATH, data_type="Train", time_steps=2)
for i in range(1, len(data_set) - 2):
item_data = data_set[i]
g1_data = item_data["mg_features"]["g1"]
g2_data = item_data["mg_features"]["g2"]
g3_data = item_data["mg_features"]["g3"]
g4_data = item_data["mg_features"]["g4"]
g5_data = item_data["mg_features"]["g5"]
print(g1_data, g2_data, g3_data, g4_data, g5_data)
print(item_data["label"])
break