forked from Hzzone/pytorch-openpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathangle_from_data.py
138 lines (122 loc) · 4.92 KB
/
angle_from_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from src.body import Body
from src import util
from elbow_func import util_elbow
import pyrealsense2 as rs
import numpy as np
import os
import cv2
import copy
import time
import sys
import json
import csv
import math
#INPUT_FILE_NAME = "image.png"
if __name__ == "__main__":
# モデルの読み込みとデータの取得
video, depth_frames, frequency, json_path = util_elbow.load_data()
body_estimation = Body('model/body_pose_model.pth')
# 変数類の定義
frame_count = 0
angles = []
angles_csv = []
shoulder_list = []
elbow_list = []
wrist_list = []
flag1 = False
counter1 = 1
past_frame_time = time.time()
sec_per_frame = 1.0 / frequency
# 本研究室のD435のintrinsicsを利用
intr = rs.pyrealsense2.intrinsics()
intr.width = 640
intr.height = 360
intr.ppx = 321.2279968261719
intr.ppy = 176.7667999267578
intr.fx = 318.4465637207031
intr.fy = 318.4465637207031
intr.model = rs.pyrealsense2.distortion.brown_conrady
intr.coeffs = [0.0, 0.0, 0.0, 0.0, 0.0]
start_time = time.time()
# ループ部 推定を含む
try:
while True:
ret, color_frame = video.read()
depth_frame = depth_frames[frame_count, :, :]
color_image_s = cv2.resize(color_frame, (640, 360))
current_time = time.time()
time.sleep(max(0, sec_per_frame - (current_time - past_frame_time)))
past_frame_time = current_time
candidate, subset = body_estimation(color_image_s)
ind_test = util_elbow.get_arm_index(subset)
xy = util_elbow.get_xy(ind_test, candidate)
canvas = util_elbow.draw_armpose(color_image_s, xy)
if len(xy) >= 1:
world_XYZ = util_elbow.pixel_to_world_XYZ(
intr, xy, depth_frame)
# CSV用listの生成
shoulder_list.append(world_XYZ[0][0][0:3])
shoulder_list[-1].insert(0, counter1)
shoulder_list[-1].insert(1, "shoulder")
elbow_list.append(world_XYZ[0][1][0:3])
elbow_list[-1].insert(0, counter1)
elbow_list[-1].insert(1, "elbow")
wrist_list.append(world_XYZ[0][2][0:3])
wrist_list[-1].insert(0, counter1)
wrist_list[-1].insert(1, "wrist")
angle_deg = util_elbow.calculate_angle(world_XYZ)
angles_csv.append([counter1, angle_deg])
if flag1:
previous_angle = (angles[-1] + angles[-2]) / 2
if angle_deg <= previous_angle + 45 and angle_deg >= previous_angle - 45:
angles.append(angle_deg)
else:
angles.append(angle_deg)
counter1 += 1
if counter1 >= 6:
flag1 = True
cv2.putText(canvas, f"min: {int(min(angles))} deg",
(410, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0),
1, cv2.LINE_AA)
cv2.putText(canvas, f"max: {int(max(angles))} deg",
(410, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0),
1, cv2.LINE_AA)
if not math.isnan(angle_deg):
cv2.putText(canvas, f"{int(angle_deg)} degree",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0),
1, cv2.LINE_AA)
cv2.imshow("frame", canvas)
k = cv2.waitKey(1)
if k & 0xff == 27: # ESCで終了
cv2.destroyAllWindows()
break
frame_count += 1
if frame_count >= depth_frames.shape[0]:
cv2.destroyAllWindows()
break
finally:
end_time = time.time()
json_name = os.path.splitext(os.path.basename(json_path))[0]
if not os.path.exists(f"./results"):
os.mkdir(f"./results")
if not os.path.exists(f"./results/{json_name}_openpose"):
os.mkdir(f"./results/{json_name}_openpose")
with open(f"./results/{json_name}_openpose/XYZ.csv", "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["frame", "part", "X", "Y", "Z"])
writer.writerows(shoulder_list)
writer.writerows(elbow_list)
writer.writerows(wrist_list)
with open(f"./results/{json_name}_openpose/angles.csv", "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["frame", "angle"])
writer.writerows(angles_csv)
os.system("cls")
measurement_time = end_time - start_time
print("Completed")
print("------------------------------------")
print(json_path)
print(f"min:{int(min(angles))}")
print(f"max:{int(max(angles))}")
print(f"time:{measurement_time}")
video.release()