forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.py
940 lines (821 loc) · 31.9 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
#!/usr/bin/env python3
# Copyright (c) 2015-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Functionality to build scripts, as well as signature hash functions.
This file is modified from python-bitcoinlib.
"""
from collections import namedtuple
import unittest
from .key import TaggedHash, tweak_add_pubkey, compute_xonly_pubkey
from .messages import (
CTransaction,
CTxOut,
hash256,
ser_string,
ser_uint256,
sha256,
uint256_from_str,
)
from .crypto.ripemd160 import ripemd160
MAX_SCRIPT_ELEMENT_SIZE = 520
MAX_PUBKEYS_PER_MULTI_A = 999
LOCKTIME_THRESHOLD = 500000000
ANNEX_TAG = 0x50
LEAF_VERSION_TAPSCRIPT = 0xc0
def hash160(s):
return ripemd160(sha256(s))
def bn2vch(v):
"""Convert number to bitcoin-specific little endian format."""
# We need v.bit_length() bits, plus a sign bit for every nonzero number.
n_bits = v.bit_length() + (v != 0)
# The number of bytes for that is:
n_bytes = (n_bits + 7) // 8
# Convert number to absolute value + sign in top bit.
encoded_v = 0 if v == 0 else abs(v) | ((v < 0) << (n_bytes * 8 - 1))
# Serialize to bytes
return encoded_v.to_bytes(n_bytes, 'little')
class CScriptOp(int):
"""A single script opcode"""
__slots__ = ()
@staticmethod
def encode_op_pushdata(d):
"""Encode a PUSHDATA op, returning bytes"""
if len(d) < 0x4c:
return b'' + bytes([len(d)]) + d # OP_PUSHDATA
elif len(d) <= 0xff:
return b'\x4c' + bytes([len(d)]) + d # OP_PUSHDATA1
elif len(d) <= 0xffff:
return b'\x4d' + len(d).to_bytes(2, "little") + d # OP_PUSHDATA2
elif len(d) <= 0xffffffff:
return b'\x4e' + len(d).to_bytes(4, "little") + d # OP_PUSHDATA4
else:
raise ValueError("Data too long to encode in a PUSHDATA op")
@staticmethod
def encode_op_n(n):
"""Encode a small integer op, returning an opcode"""
if not (0 <= n <= 16):
raise ValueError('Integer must be in range 0 <= n <= 16, got %d' % n)
if n == 0:
return OP_0
else:
return CScriptOp(OP_1 + n - 1)
def decode_op_n(self):
"""Decode a small integer opcode, returning an integer"""
if self == OP_0:
return 0
if not (self == OP_0 or OP_1 <= self <= OP_16):
raise ValueError('op %r is not an OP_N' % self)
return int(self - OP_1 + 1)
def is_small_int(self):
"""Return true if the op pushes a small integer to the stack"""
if 0x51 <= self <= 0x60 or self == 0:
return True
else:
return False
def __str__(self):
return repr(self)
def __repr__(self):
if self in OPCODE_NAMES:
return OPCODE_NAMES[self]
else:
return 'CScriptOp(0x%x)' % self
def __new__(cls, n):
try:
return _opcode_instances[n]
except IndexError:
assert len(_opcode_instances) == n
_opcode_instances.append(super().__new__(cls, n))
return _opcode_instances[n]
OPCODE_NAMES: dict[CScriptOp, str] = {}
_opcode_instances: list[CScriptOp] = []
# Populate opcode instance table
for n in range(0xff + 1):
CScriptOp(n)
# push value
OP_0 = CScriptOp(0x00)
OP_FALSE = OP_0
OP_PUSHDATA1 = CScriptOp(0x4c)
OP_PUSHDATA2 = CScriptOp(0x4d)
OP_PUSHDATA4 = CScriptOp(0x4e)
OP_1NEGATE = CScriptOp(0x4f)
OP_RESERVED = CScriptOp(0x50)
OP_1 = CScriptOp(0x51)
OP_TRUE = OP_1
OP_2 = CScriptOp(0x52)
OP_3 = CScriptOp(0x53)
OP_4 = CScriptOp(0x54)
OP_5 = CScriptOp(0x55)
OP_6 = CScriptOp(0x56)
OP_7 = CScriptOp(0x57)
OP_8 = CScriptOp(0x58)
OP_9 = CScriptOp(0x59)
OP_10 = CScriptOp(0x5a)
OP_11 = CScriptOp(0x5b)
OP_12 = CScriptOp(0x5c)
OP_13 = CScriptOp(0x5d)
OP_14 = CScriptOp(0x5e)
OP_15 = CScriptOp(0x5f)
OP_16 = CScriptOp(0x60)
# control
OP_NOP = CScriptOp(0x61)
OP_VER = CScriptOp(0x62)
OP_IF = CScriptOp(0x63)
OP_NOTIF = CScriptOp(0x64)
OP_VERIF = CScriptOp(0x65)
OP_VERNOTIF = CScriptOp(0x66)
OP_ELSE = CScriptOp(0x67)
OP_ENDIF = CScriptOp(0x68)
OP_VERIFY = CScriptOp(0x69)
OP_RETURN = CScriptOp(0x6a)
# stack ops
OP_TOALTSTACK = CScriptOp(0x6b)
OP_FROMALTSTACK = CScriptOp(0x6c)
OP_2DROP = CScriptOp(0x6d)
OP_2DUP = CScriptOp(0x6e)
OP_3DUP = CScriptOp(0x6f)
OP_2OVER = CScriptOp(0x70)
OP_2ROT = CScriptOp(0x71)
OP_2SWAP = CScriptOp(0x72)
OP_IFDUP = CScriptOp(0x73)
OP_DEPTH = CScriptOp(0x74)
OP_DROP = CScriptOp(0x75)
OP_DUP = CScriptOp(0x76)
OP_NIP = CScriptOp(0x77)
OP_OVER = CScriptOp(0x78)
OP_PICK = CScriptOp(0x79)
OP_ROLL = CScriptOp(0x7a)
OP_ROT = CScriptOp(0x7b)
OP_SWAP = CScriptOp(0x7c)
OP_TUCK = CScriptOp(0x7d)
# splice ops
OP_CAT = CScriptOp(0x7e)
OP_SUBSTR = CScriptOp(0x7f)
OP_LEFT = CScriptOp(0x80)
OP_RIGHT = CScriptOp(0x81)
OP_SIZE = CScriptOp(0x82)
# bit logic
OP_INVERT = CScriptOp(0x83)
OP_AND = CScriptOp(0x84)
OP_OR = CScriptOp(0x85)
OP_XOR = CScriptOp(0x86)
OP_EQUAL = CScriptOp(0x87)
OP_EQUALVERIFY = CScriptOp(0x88)
OP_RESERVED1 = CScriptOp(0x89)
OP_RESERVED2 = CScriptOp(0x8a)
# numeric
OP_1ADD = CScriptOp(0x8b)
OP_1SUB = CScriptOp(0x8c)
OP_2MUL = CScriptOp(0x8d)
OP_2DIV = CScriptOp(0x8e)
OP_NEGATE = CScriptOp(0x8f)
OP_ABS = CScriptOp(0x90)
OP_NOT = CScriptOp(0x91)
OP_0NOTEQUAL = CScriptOp(0x92)
OP_ADD = CScriptOp(0x93)
OP_SUB = CScriptOp(0x94)
OP_MUL = CScriptOp(0x95)
OP_DIV = CScriptOp(0x96)
OP_MOD = CScriptOp(0x97)
OP_LSHIFT = CScriptOp(0x98)
OP_RSHIFT = CScriptOp(0x99)
OP_BOOLAND = CScriptOp(0x9a)
OP_BOOLOR = CScriptOp(0x9b)
OP_NUMEQUAL = CScriptOp(0x9c)
OP_NUMEQUALVERIFY = CScriptOp(0x9d)
OP_NUMNOTEQUAL = CScriptOp(0x9e)
OP_LESSTHAN = CScriptOp(0x9f)
OP_GREATERTHAN = CScriptOp(0xa0)
OP_LESSTHANOREQUAL = CScriptOp(0xa1)
OP_GREATERTHANOREQUAL = CScriptOp(0xa2)
OP_MIN = CScriptOp(0xa3)
OP_MAX = CScriptOp(0xa4)
OP_WITHIN = CScriptOp(0xa5)
# crypto
OP_RIPEMD160 = CScriptOp(0xa6)
OP_SHA1 = CScriptOp(0xa7)
OP_SHA256 = CScriptOp(0xa8)
OP_HASH160 = CScriptOp(0xa9)
OP_HASH256 = CScriptOp(0xaa)
OP_CODESEPARATOR = CScriptOp(0xab)
OP_CHECKSIG = CScriptOp(0xac)
OP_CHECKSIGVERIFY = CScriptOp(0xad)
OP_CHECKMULTISIG = CScriptOp(0xae)
OP_CHECKMULTISIGVERIFY = CScriptOp(0xaf)
# expansion
OP_NOP1 = CScriptOp(0xb0)
OP_CHECKLOCKTIMEVERIFY = CScriptOp(0xb1)
OP_CHECKSEQUENCEVERIFY = CScriptOp(0xb2)
OP_NOP4 = CScriptOp(0xb3)
OP_NOP5 = CScriptOp(0xb4)
OP_NOP6 = CScriptOp(0xb5)
OP_NOP7 = CScriptOp(0xb6)
OP_NOP8 = CScriptOp(0xb7)
OP_NOP9 = CScriptOp(0xb8)
OP_NOP10 = CScriptOp(0xb9)
# BIP 342 opcodes (Tapscript)
OP_CHECKSIGADD = CScriptOp(0xba)
OP_INVALIDOPCODE = CScriptOp(0xff)
OPCODE_NAMES.update({
OP_0: 'OP_0',
OP_PUSHDATA1: 'OP_PUSHDATA1',
OP_PUSHDATA2: 'OP_PUSHDATA2',
OP_PUSHDATA4: 'OP_PUSHDATA4',
OP_1NEGATE: 'OP_1NEGATE',
OP_RESERVED: 'OP_RESERVED',
OP_1: 'OP_1',
OP_2: 'OP_2',
OP_3: 'OP_3',
OP_4: 'OP_4',
OP_5: 'OP_5',
OP_6: 'OP_6',
OP_7: 'OP_7',
OP_8: 'OP_8',
OP_9: 'OP_9',
OP_10: 'OP_10',
OP_11: 'OP_11',
OP_12: 'OP_12',
OP_13: 'OP_13',
OP_14: 'OP_14',
OP_15: 'OP_15',
OP_16: 'OP_16',
OP_NOP: 'OP_NOP',
OP_VER: 'OP_VER',
OP_IF: 'OP_IF',
OP_NOTIF: 'OP_NOTIF',
OP_VERIF: 'OP_VERIF',
OP_VERNOTIF: 'OP_VERNOTIF',
OP_ELSE: 'OP_ELSE',
OP_ENDIF: 'OP_ENDIF',
OP_VERIFY: 'OP_VERIFY',
OP_RETURN: 'OP_RETURN',
OP_TOALTSTACK: 'OP_TOALTSTACK',
OP_FROMALTSTACK: 'OP_FROMALTSTACK',
OP_2DROP: 'OP_2DROP',
OP_2DUP: 'OP_2DUP',
OP_3DUP: 'OP_3DUP',
OP_2OVER: 'OP_2OVER',
OP_2ROT: 'OP_2ROT',
OP_2SWAP: 'OP_2SWAP',
OP_IFDUP: 'OP_IFDUP',
OP_DEPTH: 'OP_DEPTH',
OP_DROP: 'OP_DROP',
OP_DUP: 'OP_DUP',
OP_NIP: 'OP_NIP',
OP_OVER: 'OP_OVER',
OP_PICK: 'OP_PICK',
OP_ROLL: 'OP_ROLL',
OP_ROT: 'OP_ROT',
OP_SWAP: 'OP_SWAP',
OP_TUCK: 'OP_TUCK',
OP_CAT: 'OP_CAT',
OP_SUBSTR: 'OP_SUBSTR',
OP_LEFT: 'OP_LEFT',
OP_RIGHT: 'OP_RIGHT',
OP_SIZE: 'OP_SIZE',
OP_INVERT: 'OP_INVERT',
OP_AND: 'OP_AND',
OP_OR: 'OP_OR',
OP_XOR: 'OP_XOR',
OP_EQUAL: 'OP_EQUAL',
OP_EQUALVERIFY: 'OP_EQUALVERIFY',
OP_RESERVED1: 'OP_RESERVED1',
OP_RESERVED2: 'OP_RESERVED2',
OP_1ADD: 'OP_1ADD',
OP_1SUB: 'OP_1SUB',
OP_2MUL: 'OP_2MUL',
OP_2DIV: 'OP_2DIV',
OP_NEGATE: 'OP_NEGATE',
OP_ABS: 'OP_ABS',
OP_NOT: 'OP_NOT',
OP_0NOTEQUAL: 'OP_0NOTEQUAL',
OP_ADD: 'OP_ADD',
OP_SUB: 'OP_SUB',
OP_MUL: 'OP_MUL',
OP_DIV: 'OP_DIV',
OP_MOD: 'OP_MOD',
OP_LSHIFT: 'OP_LSHIFT',
OP_RSHIFT: 'OP_RSHIFT',
OP_BOOLAND: 'OP_BOOLAND',
OP_BOOLOR: 'OP_BOOLOR',
OP_NUMEQUAL: 'OP_NUMEQUAL',
OP_NUMEQUALVERIFY: 'OP_NUMEQUALVERIFY',
OP_NUMNOTEQUAL: 'OP_NUMNOTEQUAL',
OP_LESSTHAN: 'OP_LESSTHAN',
OP_GREATERTHAN: 'OP_GREATERTHAN',
OP_LESSTHANOREQUAL: 'OP_LESSTHANOREQUAL',
OP_GREATERTHANOREQUAL: 'OP_GREATERTHANOREQUAL',
OP_MIN: 'OP_MIN',
OP_MAX: 'OP_MAX',
OP_WITHIN: 'OP_WITHIN',
OP_RIPEMD160: 'OP_RIPEMD160',
OP_SHA1: 'OP_SHA1',
OP_SHA256: 'OP_SHA256',
OP_HASH160: 'OP_HASH160',
OP_HASH256: 'OP_HASH256',
OP_CODESEPARATOR: 'OP_CODESEPARATOR',
OP_CHECKSIG: 'OP_CHECKSIG',
OP_CHECKSIGVERIFY: 'OP_CHECKSIGVERIFY',
OP_CHECKMULTISIG: 'OP_CHECKMULTISIG',
OP_CHECKMULTISIGVERIFY: 'OP_CHECKMULTISIGVERIFY',
OP_NOP1: 'OP_NOP1',
OP_CHECKLOCKTIMEVERIFY: 'OP_CHECKLOCKTIMEVERIFY',
OP_CHECKSEQUENCEVERIFY: 'OP_CHECKSEQUENCEVERIFY',
OP_NOP4: 'OP_NOP4',
OP_NOP5: 'OP_NOP5',
OP_NOP6: 'OP_NOP6',
OP_NOP7: 'OP_NOP7',
OP_NOP8: 'OP_NOP8',
OP_NOP9: 'OP_NOP9',
OP_NOP10: 'OP_NOP10',
OP_CHECKSIGADD: 'OP_CHECKSIGADD',
OP_INVALIDOPCODE: 'OP_INVALIDOPCODE',
})
class CScriptInvalidError(Exception):
"""Base class for CScript exceptions"""
pass
class CScriptTruncatedPushDataError(CScriptInvalidError):
"""Invalid pushdata due to truncation"""
def __init__(self, msg, data):
self.data = data
super().__init__(msg)
# This is used, eg, for blockchain heights in coinbase scripts (bip34)
class CScriptNum:
__slots__ = ("value",)
def __init__(self, d=0):
self.value = d
@staticmethod
def encode(obj):
r = bytearray(0)
if obj.value == 0:
return bytes(r)
neg = obj.value < 0
absvalue = -obj.value if neg else obj.value
while (absvalue):
r.append(absvalue & 0xff)
absvalue >>= 8
if r[-1] & 0x80:
r.append(0x80 if neg else 0)
elif neg:
r[-1] |= 0x80
return bytes([len(r)]) + r
@staticmethod
def decode(vch):
result = 0
# We assume valid push_size and minimal encoding
value = vch[1:]
if len(value) == 0:
return result
for i, byte in enumerate(value):
result |= int(byte) << 8 * i
if value[-1] >= 0x80:
# Mask for all but the highest result bit
num_mask = (2**(len(value) * 8) - 1) >> 1
result &= num_mask
result *= -1
return result
class CScript(bytes):
"""Serialized script
A bytes subclass, so you can use this directly whenever bytes are accepted.
Note that this means that indexing does *not* work - you'll get an index by
byte rather than opcode. This format was chosen for efficiency so that the
general case would not require creating a lot of little CScriptOP objects.
iter(script) however does iterate by opcode.
"""
__slots__ = ()
@classmethod
def __coerce_instance(cls, other):
# Coerce other into bytes
if isinstance(other, CScriptOp):
other = bytes([other])
elif isinstance(other, CScriptNum):
if (other.value == 0):
other = bytes([CScriptOp(OP_0)])
else:
other = CScriptNum.encode(other)
elif isinstance(other, int):
if 0 <= other <= 16:
other = bytes([CScriptOp.encode_op_n(other)])
elif other == -1:
other = bytes([OP_1NEGATE])
else:
other = CScriptOp.encode_op_pushdata(bn2vch(other))
elif isinstance(other, (bytes, bytearray)):
other = CScriptOp.encode_op_pushdata(other)
return other
def __add__(self, other):
# add makes no sense for a CScript()
raise NotImplementedError
def join(self, iterable):
# join makes no sense for a CScript()
raise NotImplementedError
def __new__(cls, value=b''):
if isinstance(value, bytes) or isinstance(value, bytearray):
return super().__new__(cls, value)
else:
def coerce_iterable(iterable):
for instance in iterable:
yield cls.__coerce_instance(instance)
# Annoyingly on both python2 and python3 bytes.join() always
# returns a bytes instance even when subclassed.
return super().__new__(cls, b''.join(coerce_iterable(value)))
def raw_iter(self):
"""Raw iteration
Yields tuples of (opcode, data, sop_idx) so that the different possible
PUSHDATA encodings can be accurately distinguished, as well as
determining the exact opcode byte indexes. (sop_idx)
"""
i = 0
while i < len(self):
sop_idx = i
opcode = CScriptOp(self[i])
i += 1
if opcode > OP_PUSHDATA4:
yield (opcode, None, sop_idx)
else:
datasize = None
pushdata_type = None
if opcode < OP_PUSHDATA1:
pushdata_type = 'PUSHDATA(%d)' % opcode
datasize = opcode
elif opcode == OP_PUSHDATA1:
pushdata_type = 'PUSHDATA1'
if i >= len(self):
raise CScriptInvalidError('PUSHDATA1: missing data length')
datasize = self[i]
i += 1
elif opcode == OP_PUSHDATA2:
pushdata_type = 'PUSHDATA2'
if i + 1 >= len(self):
raise CScriptInvalidError('PUSHDATA2: missing data length')
datasize = self[i] + (self[i + 1] << 8)
i += 2
elif opcode == OP_PUSHDATA4:
pushdata_type = 'PUSHDATA4'
if i + 3 >= len(self):
raise CScriptInvalidError('PUSHDATA4: missing data length')
datasize = self[i] + (self[i + 1] << 8) + (self[i + 2] << 16) + (self[i + 3] << 24)
i += 4
else:
assert False # shouldn't happen
data = bytes(self[i:i + datasize])
# Check for truncation
if len(data) < datasize:
raise CScriptTruncatedPushDataError('%s: truncated data' % pushdata_type, data)
i += datasize
yield (opcode, data, sop_idx)
def __iter__(self):
"""'Cooked' iteration
Returns either a CScriptOP instance, an integer, or bytes, as
appropriate.
See raw_iter() if you need to distinguish the different possible
PUSHDATA encodings.
"""
for (opcode, data, sop_idx) in self.raw_iter():
if data is not None:
yield data
else:
opcode = CScriptOp(opcode)
if opcode.is_small_int():
yield opcode.decode_op_n()
else:
yield CScriptOp(opcode)
def __repr__(self):
def _repr(o):
if isinstance(o, bytes):
return "x('%s')" % o.hex()
else:
return repr(o)
ops = []
i = iter(self)
while True:
op = None
try:
op = _repr(next(i))
except CScriptTruncatedPushDataError as err:
op = '%s...<ERROR: %s>' % (_repr(err.data), err)
break
except CScriptInvalidError as err:
op = '<ERROR: %s>' % err
break
except StopIteration:
break
finally:
if op is not None:
ops.append(op)
return "CScript([%s])" % ', '.join(ops)
def GetSigOpCount(self, fAccurate):
"""Get the SigOp count.
fAccurate - Accurately count CHECKMULTISIG, see BIP16 for details.
Note that this is consensus-critical.
"""
n = 0
lastOpcode = OP_INVALIDOPCODE
for (opcode, data, sop_idx) in self.raw_iter():
if opcode in (OP_CHECKSIG, OP_CHECKSIGVERIFY):
n += 1
elif opcode in (OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY):
if fAccurate and (OP_1 <= lastOpcode <= OP_16):
n += lastOpcode.decode_op_n()
else:
n += 20
lastOpcode = opcode
return n
def IsWitnessProgram(self):
"""A witness program is any valid CScript that consists of a 1-byte
push opcode followed by a data push between 2 and 40 bytes."""
return ((4 <= len(self) <= 42) and
(self[0] == OP_0 or (OP_1 <= self[0] <= OP_16)) and
(self[1] + 2 == len(self)))
SIGHASH_DEFAULT = 0 # Taproot-only default, semantics same as SIGHASH_ALL
SIGHASH_ALL = 1
SIGHASH_NONE = 2
SIGHASH_SINGLE = 3
SIGHASH_ANYONECANPAY = 0x80
def FindAndDelete(script, sig):
"""Consensus critical, see FindAndDelete() in Satoshi codebase"""
r = b''
last_sop_idx = sop_idx = 0
skip = True
for (opcode, data, sop_idx) in script.raw_iter():
if not skip:
r += script[last_sop_idx:sop_idx]
last_sop_idx = sop_idx
if script[sop_idx:sop_idx + len(sig)] == sig:
skip = True
else:
skip = False
if not skip:
r += script[last_sop_idx:]
return CScript(r)
def LegacySignatureMsg(script, txTo, inIdx, hashtype):
"""Preimage of the signature hash, if it exists.
Returns either (None, err) to indicate error (which translates to sighash 1),
or (msg, None).
"""
if inIdx >= len(txTo.vin):
return (None, "inIdx %d out of range (%d)" % (inIdx, len(txTo.vin)))
txtmp = CTransaction(txTo)
for txin in txtmp.vin:
txin.scriptSig = b''
txtmp.vin[inIdx].scriptSig = FindAndDelete(script, CScript([OP_CODESEPARATOR]))
if (hashtype & 0x1f) == SIGHASH_NONE:
txtmp.vout = []
for i in range(len(txtmp.vin)):
if i != inIdx:
txtmp.vin[i].nSequence = 0
elif (hashtype & 0x1f) == SIGHASH_SINGLE:
outIdx = inIdx
if outIdx >= len(txtmp.vout):
return (None, "outIdx %d out of range (%d)" % (outIdx, len(txtmp.vout)))
tmp = txtmp.vout[outIdx]
txtmp.vout = []
for _ in range(outIdx):
txtmp.vout.append(CTxOut(-1))
txtmp.vout.append(tmp)
for i in range(len(txtmp.vin)):
if i != inIdx:
txtmp.vin[i].nSequence = 0
if hashtype & SIGHASH_ANYONECANPAY:
tmp = txtmp.vin[inIdx]
txtmp.vin = []
txtmp.vin.append(tmp)
s = txtmp.serialize_without_witness()
s += hashtype.to_bytes(4, "little")
return (s, None)
def LegacySignatureHash(*args, **kwargs):
"""Consensus-correct SignatureHash
Returns (hash, err) to precisely match the consensus-critical behavior of
the SIGHASH_SINGLE bug. (inIdx is *not* checked for validity)
"""
HASH_ONE = b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
msg, err = LegacySignatureMsg(*args, **kwargs)
if msg is None:
return (HASH_ONE, err)
else:
return (hash256(msg), err)
def sign_input_legacy(tx, input_index, input_scriptpubkey, privkey, sighash_type=SIGHASH_ALL):
"""Add legacy ECDSA signature for a given transaction input. Note that the signature
is prepended to the scriptSig field, i.e. additional data pushes necessary for more
complex spends than P2PK (e.g. pubkey for P2PKH) can be already set before."""
(sighash, err) = LegacySignatureHash(input_scriptpubkey, tx, input_index, sighash_type)
assert err is None
der_sig = privkey.sign_ecdsa(sighash)
tx.vin[input_index].scriptSig = bytes(CScript([der_sig + bytes([sighash_type])])) + tx.vin[input_index].scriptSig
tx.rehash()
def sign_input_segwitv0(tx, input_index, input_scriptpubkey, input_amount, privkey, sighash_type=SIGHASH_ALL):
"""Add segwitv0 ECDSA signature for a given transaction input. Note that the signature
is inserted at the bottom of the witness stack, i.e. additional witness data
needed (e.g. pubkey for P2WPKH) can already be set before."""
sighash = SegwitV0SignatureHash(input_scriptpubkey, tx, input_index, sighash_type, input_amount)
der_sig = privkey.sign_ecdsa(sighash)
tx.wit.vtxinwit[input_index].scriptWitness.stack.insert(0, der_sig + bytes([sighash_type]))
tx.rehash()
# TODO: Allow cached hashPrevouts/hashSequence/hashOutputs to be provided.
# Performance optimization probably not necessary for python tests, however.
# Note that this corresponds to sigversion == 1 in EvalScript, which is used
# for version 0 witnesses.
def SegwitV0SignatureMsg(script, txTo, inIdx, hashtype, amount):
hashPrevouts = 0
hashSequence = 0
hashOutputs = 0
if not (hashtype & SIGHASH_ANYONECANPAY):
serialize_prevouts = bytes()
for i in txTo.vin:
serialize_prevouts += i.prevout.serialize()
hashPrevouts = uint256_from_str(hash256(serialize_prevouts))
if (not (hashtype & SIGHASH_ANYONECANPAY) and (hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE):
serialize_sequence = bytes()
for i in txTo.vin:
serialize_sequence += i.nSequence.to_bytes(4, "little")
hashSequence = uint256_from_str(hash256(serialize_sequence))
if ((hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE):
serialize_outputs = bytes()
for o in txTo.vout:
serialize_outputs += o.serialize()
hashOutputs = uint256_from_str(hash256(serialize_outputs))
elif ((hashtype & 0x1f) == SIGHASH_SINGLE and inIdx < len(txTo.vout)):
serialize_outputs = txTo.vout[inIdx].serialize()
hashOutputs = uint256_from_str(hash256(serialize_outputs))
ss = bytes()
ss += txTo.version.to_bytes(4, "little")
ss += ser_uint256(hashPrevouts)
ss += ser_uint256(hashSequence)
ss += txTo.vin[inIdx].prevout.serialize()
ss += ser_string(script)
ss += amount.to_bytes(8, "little", signed=True)
ss += txTo.vin[inIdx].nSequence.to_bytes(4, "little")
ss += ser_uint256(hashOutputs)
ss += txTo.nLockTime.to_bytes(4, "little")
ss += hashtype.to_bytes(4, "little")
return ss
def SegwitV0SignatureHash(*args, **kwargs):
return hash256(SegwitV0SignatureMsg(*args, **kwargs))
class TestFrameworkScript(unittest.TestCase):
def test_bn2vch(self):
self.assertEqual(bn2vch(0), bytes([]))
self.assertEqual(bn2vch(1), bytes([0x01]))
self.assertEqual(bn2vch(-1), bytes([0x81]))
self.assertEqual(bn2vch(0x7F), bytes([0x7F]))
self.assertEqual(bn2vch(-0x7F), bytes([0xFF]))
self.assertEqual(bn2vch(0x80), bytes([0x80, 0x00]))
self.assertEqual(bn2vch(-0x80), bytes([0x80, 0x80]))
self.assertEqual(bn2vch(0xFF), bytes([0xFF, 0x00]))
self.assertEqual(bn2vch(-0xFF), bytes([0xFF, 0x80]))
self.assertEqual(bn2vch(0x100), bytes([0x00, 0x01]))
self.assertEqual(bn2vch(-0x100), bytes([0x00, 0x81]))
self.assertEqual(bn2vch(0x7FFF), bytes([0xFF, 0x7F]))
self.assertEqual(bn2vch(-0x8000), bytes([0x00, 0x80, 0x80]))
self.assertEqual(bn2vch(-0x7FFFFF), bytes([0xFF, 0xFF, 0xFF]))
self.assertEqual(bn2vch(0x80000000), bytes([0x00, 0x00, 0x00, 0x80, 0x00]))
self.assertEqual(bn2vch(-0x80000000), bytes([0x00, 0x00, 0x00, 0x80, 0x80]))
self.assertEqual(bn2vch(0xFFFFFFFF), bytes([0xFF, 0xFF, 0xFF, 0xFF, 0x00]))
self.assertEqual(bn2vch(123456789), bytes([0x15, 0xCD, 0x5B, 0x07]))
self.assertEqual(bn2vch(-54321), bytes([0x31, 0xD4, 0x80]))
def test_cscriptnum_encoding(self):
# round-trip negative and multi-byte CScriptNums
values = [0, 1, -1, -2, 127, 128, -255, 256, (1 << 15) - 1, -(1 << 16), (1 << 24) - 1, (1 << 31), 1 - (1 << 32), 1 << 40, 1500, -1500]
for value in values:
self.assertEqual(CScriptNum.decode(CScriptNum.encode(CScriptNum(value))), value)
def test_legacy_sigopcount(self):
# test repeated single sig ops
for n_ops in range(1, 100, 10):
for singlesig_op in (OP_CHECKSIG, OP_CHECKSIGVERIFY):
singlesigs_script = CScript([singlesig_op]*n_ops)
self.assertEqual(singlesigs_script.GetSigOpCount(fAccurate=False), n_ops)
self.assertEqual(singlesigs_script.GetSigOpCount(fAccurate=True), n_ops)
# test multisig op (including accurate counting, i.e. BIP16)
for n in range(1, 16+1):
for multisig_op in (OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY):
multisig_script = CScript([CScriptOp.encode_op_n(n), multisig_op])
self.assertEqual(multisig_script.GetSigOpCount(fAccurate=False), 20)
self.assertEqual(multisig_script.GetSigOpCount(fAccurate=True), n)
def BIP341_sha_prevouts(txTo):
return sha256(b"".join(i.prevout.serialize() for i in txTo.vin))
def BIP341_sha_amounts(spent_utxos):
return sha256(b"".join(u.nValue.to_bytes(8, "little", signed=True) for u in spent_utxos))
def BIP341_sha_scriptpubkeys(spent_utxos):
return sha256(b"".join(ser_string(u.scriptPubKey) for u in spent_utxos))
def BIP341_sha_sequences(txTo):
return sha256(b"".join(i.nSequence.to_bytes(4, "little") for i in txTo.vin))
def BIP341_sha_outputs(txTo):
return sha256(b"".join(o.serialize() for o in txTo.vout))
def TaprootSignatureMsg(txTo, spent_utxos, hash_type, input_index = 0, scriptpath = False, script = CScript(), codeseparator_pos = -1, annex = None, leaf_ver = LEAF_VERSION_TAPSCRIPT):
assert (len(txTo.vin) == len(spent_utxos))
assert (input_index < len(txTo.vin))
out_type = SIGHASH_ALL if hash_type == 0 else hash_type & 3
in_type = hash_type & SIGHASH_ANYONECANPAY
spk = spent_utxos[input_index].scriptPubKey
ss = bytes([0, hash_type]) # epoch, hash_type
ss += txTo.version.to_bytes(4, "little")
ss += txTo.nLockTime.to_bytes(4, "little")
if in_type != SIGHASH_ANYONECANPAY:
ss += BIP341_sha_prevouts(txTo)
ss += BIP341_sha_amounts(spent_utxos)
ss += BIP341_sha_scriptpubkeys(spent_utxos)
ss += BIP341_sha_sequences(txTo)
if out_type == SIGHASH_ALL:
ss += BIP341_sha_outputs(txTo)
spend_type = 0
if annex is not None:
spend_type |= 1
if (scriptpath):
spend_type |= 2
ss += bytes([spend_type])
if in_type == SIGHASH_ANYONECANPAY:
ss += txTo.vin[input_index].prevout.serialize()
ss += spent_utxos[input_index].nValue.to_bytes(8, "little", signed=True)
ss += ser_string(spk)
ss += txTo.vin[input_index].nSequence.to_bytes(4, "little")
else:
ss += input_index.to_bytes(4, "little")
if (spend_type & 1):
ss += sha256(ser_string(annex))
if out_type == SIGHASH_SINGLE:
if input_index < len(txTo.vout):
ss += sha256(txTo.vout[input_index].serialize())
else:
ss += bytes(0 for _ in range(32))
if (scriptpath):
ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script))
ss += bytes([0])
ss += codeseparator_pos.to_bytes(4, "little", signed=True)
assert len(ss) == 175 - (in_type == SIGHASH_ANYONECANPAY) * 49 - (out_type != SIGHASH_ALL and out_type != SIGHASH_SINGLE) * 32 + (annex is not None) * 32 + scriptpath * 37
return ss
def TaprootSignatureHash(*args, **kwargs):
return TaggedHash("TapSighash", TaprootSignatureMsg(*args, **kwargs))
def taproot_tree_helper(scripts):
if len(scripts) == 0:
return ([], bytes())
if len(scripts) == 1:
# One entry: treat as a leaf
script = scripts[0]
assert not callable(script)
if isinstance(script, list):
return taproot_tree_helper(script)
assert isinstance(script, tuple)
version = LEAF_VERSION_TAPSCRIPT
name = script[0]
code = script[1]
if len(script) == 3:
version = script[2]
assert version & 1 == 0
assert isinstance(code, bytes)
h = TaggedHash("TapLeaf", bytes([version]) + ser_string(code))
if name is None:
return ([], h)
return ([(name, version, code, bytes(), h)], h)
elif len(scripts) == 2 and callable(scripts[1]):
# Two entries, and the right one is a function
left, left_h = taproot_tree_helper(scripts[0:1])
right_h = scripts[1](left_h)
left = [(name, version, script, control + right_h, leaf) for name, version, script, control, leaf in left]
right = []
else:
# Two or more entries: descend into each side
split_pos = len(scripts) // 2
left, left_h = taproot_tree_helper(scripts[0:split_pos])
right, right_h = taproot_tree_helper(scripts[split_pos:])
left = [(name, version, script, control + right_h, leaf) for name, version, script, control, leaf in left]
right = [(name, version, script, control + left_h, leaf) for name, version, script, control, leaf in right]
if right_h < left_h:
right_h, left_h = left_h, right_h
h = TaggedHash("TapBranch", left_h + right_h)
return (left + right, h)
# A TaprootInfo object has the following fields:
# - scriptPubKey: the scriptPubKey (witness v1 CScript)
# - internal_pubkey: the internal pubkey (32 bytes)
# - negflag: whether the pubkey in the scriptPubKey was negated from internal_pubkey+tweak*G (bool).
# - tweak: the tweak (32 bytes)
# - leaves: a dict of name -> TaprootLeafInfo objects for all known leaves
# - merkle_root: the script tree's Merkle root, or bytes() if no leaves are present
TaprootInfo = namedtuple("TaprootInfo", "scriptPubKey,internal_pubkey,negflag,tweak,leaves,merkle_root,output_pubkey")
# A TaprootLeafInfo object has the following fields:
# - script: the leaf script (CScript or bytes)
# - version: the leaf version (0xc0 for BIP342 tapscript)
# - merklebranch: the merkle branch to use for this leaf (32*N bytes)
TaprootLeafInfo = namedtuple("TaprootLeafInfo", "script,version,merklebranch,leaf_hash")
def taproot_construct(pubkey, scripts=None, treat_internal_as_infinity=False):
"""Construct a tree of Taproot spending conditions
pubkey: a 32-byte xonly pubkey for the internal pubkey (bytes)
scripts: a list of items; each item is either:
- a (name, CScript or bytes, leaf version) tuple
- a (name, CScript or bytes) tuple (defaulting to leaf version 0xc0)
- another list of items (with the same structure)
- a list of two items; the first of which is an item itself, and the
second is a function. The function takes as input the Merkle root of the
first item, and produces a (fictitious) partner to hash with.
Returns: a TaprootInfo object
"""
if scripts is None:
scripts = []
ret, h = taproot_tree_helper(scripts)
tweak = TaggedHash("TapTweak", pubkey + h)
if treat_internal_as_infinity:
tweaked, negated = compute_xonly_pubkey(tweak)
else:
tweaked, negated = tweak_add_pubkey(pubkey, tweak)
leaves = dict((name, TaprootLeafInfo(script, version, merklebranch, leaf)) for name, version, script, merklebranch, leaf in ret)
return TaprootInfo(CScript([OP_1, tweaked]), pubkey, negated + 0, tweak, leaves, h, tweaked)
def is_op_success(o):
return o == 0x50 or o == 0x62 or o == 0x89 or o == 0x8a or o == 0x8d or o == 0x8e or (o >= 0x7e and o <= 0x81) or (o >= 0x83 and o <= 0x86) or (o >= 0x95 and o <= 0x99) or (o >= 0xbb and o <= 0xfe)