-
Notifications
You must be signed in to change notification settings - Fork 0
/
CYM.aux
631 lines (631 loc) · 61 KB
/
CYM.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
\relax
\providecommand*\new@tpo@label[2]{}
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\BKM@entry[2]{}
\babel@aux{english}{}
\BKM@entry{id=1,dest={73656374696F6E2E31},srcline={463}}{5C3337365C3337375C303030495C3030306E5C303030745C303030725C3030306F5C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030735C303030755C3030306D5C3030306D5C303030615C303030725C30303079}
\citation{CurvedYMH}
\citation{DaSilva}
\citation{OriginofCYMH}
\citation{mayer2009lie}
\citation{CurvedYMH}
\citation{My1stpaper}
\citation{MyThesis}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction and summary}{1}{section.1}\protected@file@percent }
\citation{DaSilva}
\citation{MyThesis}
\citation{MyThesis}
\citation{MyThesis}
\citation{My1stpaper}
\BKM@entry{id=2,dest={73756273656374696F6E2E312E31},srcline={516}}{5C3337365C3337375C303030535C303030755C3030306D5C3030306D5C303030615C303030725C30303079}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Summary}{3}{subsection.1.1}\protected@file@percent }
\citation{GroupoidBasedPrincipalBundles}
\citation{mackenzieGeneralTheory}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{FernandesMarcutMultiplicativeForms}
\citation{crainic2015multiplicative}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{crainic2003differentiable}
\citation{My1stpaper}
\citation{MyThesis}
\citation{MyThesis}
\BKM@entry{id=3,dest={73756273656374696F6E2E312E32},srcline={970}}{5C3337365C3337375C303030425C303030615C303030735C303030695C303030635C3030305C3034305C3030306E5C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030725C303030655C3030306D5C303030615C303030725C3030306B5C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Basic notations and remarks}{15}{subsection.1.2}\protected@file@percent }
\newlabel{BasicNotations}{{1.2}{15}{Basic notations and remarks}{subsection.1.2}{}}
\citation{Hamilton}
\newlabel{def:GradingOfProducts}{{1.1}{17}{Graded extension of products, \newline \cite [generalization of Definition 5.5.3; page 275]{Hamilton}}{theorem.1.1}{}}
\citation{Hamilton}
\BKM@entry{id=4,dest={73756273656374696F6E2E312E33},srcline={1091}}{5C3337365C3337375C303030415C303030735C303030735C303030755C3030306D5C303030655C303030645C3030305C3034305C303030625C303030615C303030635C3030306B5C303030675C303030725C3030306F5C303030755C3030306E5C303030645C3030305C3034305C3030306B5C3030306E5C3030306F5C303030775C3030306C5C303030655C303030645C303030675C30303065}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{prop:GradedExtensionPlusAntiSymm}{{1.2}{18}{Graded extensions of antisymmetric tensors}{theorem.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Assumed background knowledge}{18}{subsection.1.3}\protected@file@percent }
\BKM@entry{id=5,dest={73656374696F6E2E32},srcline={1262}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030675C303030725C3030306F5C303030755C303030705C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C303030735C3030305C3034305C3030305C3035305C3030304C5C303030475C303030425C303030735C3030305C303531}
\BKM@entry{id=6,dest={73756273656374696F6E2E322E31},srcline={1264}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\@writefile{toc}{\contentsline {section}{\numberline {2}Lie group bundles (LGBs)}{19}{section.2}\protected@file@percent }
\newlabel{LGBSection}{{2}{19}{Lie group bundles (LGBs)}{section.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Definition}{19}{subsection.2.1}\protected@file@percent }
\newlabel{def:LieGroupBundle}{{2.1}{19}{Lie group bundle, \cite [\S 1.1, Def.\ 1.1.19; p. 11]{mackenzieGeneralTheory}}{theorem.2.1}{}}
\newlabel{rem:LiegroupbundlesNotPrincipalBundles}{{2.2}{19}{Principal and Lie group bundles}{theorem.2.2}{}}
\citation{mackenzieGeneralTheory}
\newlabel{ex:TrivialLGBundle}{{2.3}{20}{Trivial LGB}{theorem.2.3}{}}
\newlabel{def:LGB morphism}{{2.4}{20}{LGB morphism, \newline \cite [\S 1.2, special situation of Def.\ 1.2.1 \& 1.2.3, page 12]{mackenzieGeneralTheory}}{theorem.2.4}{}}
\newlabel{FibreRelationOverf}{{2}{20}{LGB morphism, \newline \cite [\S 1.2, special situation of Def.\ 1.2.1 \& 1.2.3, page 12]{mackenzieGeneralTheory}}{equation.2.2}{}}
\newlabel{LGBHomomorph}{{3}{20}{LGB morphism, \newline \cite [\S 1.2, special situation of Def.\ 1.2.1 \& 1.2.3, page 12]{mackenzieGeneralTheory}}{equation.2.3}{}}
\newlabel{LGBMOrphismRemark}{{2.5}{20}{}{theorem.2.5}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=7,dest={73756273656374696F6E2E322E32},srcline={1367}}{5C3337365C3337375C303030415C303030735C303030735C3030306F5C303030635C303030695C303030615C303030745C303030655C303030645C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030675C303030725C3030306F5C303030755C303030705C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\newlabel{ex:AutOfVectorBundleAnLGB}{{2.6}{21}{Automorphisms of a vector bundle,\newline \cite [\S 1.1, special situation of Ex.\ 1.1.12, page 8]{mackenzieGeneralTheory}}{theorem.2.6}{}}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Associated Lie group bundles}{22}{subsection.2.2}\protected@file@percent }
\newlabel{AssocLGBsSubSection}{{2.2}{22}{Associated Lie group bundles}{subsection.2.2}{}}
\newlabel{def:LieGroupActingOnLieGroup}{{2.7}{22}{Lie group representation on Lie groups, \newline \cite [special situation of the comment after Ex.\ 1.7.14, page 47]{mackenzieGeneralTheory}}{theorem.2.7}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\newlabel{rem:WhyRepresentation}{{2.8}{23}{Note about labeling}{theorem.2.8}{}}
\newlabel{thm:AssociatedGroupBundlesHaveGroupStructure}{{2.9}{23}{Associated Lie group bundle as quotient}{theorem.2.9}{}}
\newlabel{LiegroupStructureOnFibresofAssociated}{{7}{24}{Associated Lie group bundle as quotient}{equation.2.7}{}}
\newlabel{rem:NeutralAndInverseInAssocLGB}{{2.10}{24}{Neutral and inverse elements}{theorem.2.10}{}}
\citation{Hamilton}
\newlabel{MultiPlicationInAssocGroup}{{8}{25}{Associated Lie group bundles}{equation.2.8}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\newlabel{def:AssociatedLGB}{{2.11}{27}{Associated Lie group bundle, \newline labeling similar to \cite [\S 4.7, Def.\ 4.7.3, page 240]{Hamilton}}{theorem.2.11}{}}
\newlabel{ex:InnerLGBs}{{2.12}{27}{Inner group bundle, \newline \cite [\S 1, paragraph after Def.\ 1.1.19, page 11; comment after Construction 1.3.8, page 20]{mackenzieGeneralTheory}}{theorem.2.12}{}}
\BKM@entry{id=8,dest={73656374696F6E2E33},srcline={1702}}{5C3337365C3337375C3030304C5C303030475C303030425C3030305C3034305C303030615C303030635C303030745C303030695C3030306F5C3030306E5C303030735C3030302C5C3030305C3034305C303030705C303030615C303030725C303030745C3030305C3034305C30303049}
\BKM@entry{id=9,dest={73756273656374696F6E2E332E31},srcline={1704}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {3}LGB actions, part I}{28}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Definition}{28}{subsection.3.1}\protected@file@percent }
\citation{mackenzieGeneralTheory}
\citation{PullbackLGBLAB}
\newlabel{cor:PullbackLGB}{{3.1}{29}{Pullbacks of LGBs are LGBs, \newline \cite [\S 2.3, simplified situation of the discussion around Prop.\ 2.3.1, page 63ff.]{mackenzieGeneralTheory}}{theorem.3.1}{}}
\newlabel{MultiplicationForPullbackLGBs}{{12}{29}{Definition}{equation.3.12}{}}
\citation{mackenzieGeneralTheory}
\newlabel{def:PullbackLGBDef}{{3.3}{30}{Pullback LGB}{theorem.3.3}{}}
\newlabel{def:LiegroupACtion}{{3.4}{30}{Lie group bundle actions, \newline \cite [\S 1.6, special case of Def.\ 1.6.1, page 34]{mackenzieGeneralTheory}}{theorem.3.4}{}}
\newlabel{InvarianceOffUnderGAction}{{13}{30}{Lie group bundle actions, \newline \cite [\S 1.6, special case of Def.\ 1.6.1, page 34]{mackenzieGeneralTheory}}{equation.3.13}{}}
\newlabel{ActionAssociative}{{14}{30}{Lie group bundle actions, \newline \cite [\S 1.6, special case of Def.\ 1.6.1, page 34]{mackenzieGeneralTheory}}{equation.3.14}{}}
\newlabel{ActionNeutralElement}{{15}{30}{Lie group bundle actions, \newline \cite [\S 1.6, special case of Def.\ 1.6.1, page 34]{mackenzieGeneralTheory}}{equation.3.15}{}}
\citation{Hamilton}
\newlabel{rem:ActionAndPullbackLGBs}{{3.5}{31}{Relation to the structure of the canonical pullback Lie group bundle over $N$}{theorem.3.5}{}}
\newlabel{rem:LocalLGBAction}{{3.6}{31}{Localizing LGB actions}{theorem.3.6}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\newlabel{rem:LeftRightAction}{{3.7}{32}{Left- and right-actions}{theorem.3.7}{}}
\newlabel{def:LRTranslations}{{3.8}{32}{Left and right translations, \newline \cite [\S 3.2, notation similar to Def.\ 3.2.3, page 131]{Hamilton} \newline \cite [\S 1.4, special situation of Def.\ 1.4.1 and its discussion, page 22]{mackenzieGeneralTheory}}{theorem.3.8}{}}
\citation{Hamilton}
\newlabel{rem:LeftTranslation}{{3.9}{33}{Left action and translation}{theorem.3.9}{}}
\newlabel{rem:SectionMultiplication}{{3.10}{33}{Group action on sections}{theorem.3.10}{}}
\newlabel{SmoothnessOfACtionTranslations}{{3.11}{33}{}{theorem.3.11}{}}
\citation{Hamilton}
\citation{Hamilton}
\BKM@entry{id=10,dest={73756273656374696F6E2E332E32},srcline={1943}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030475C303030425C3030305C3034305C303030615C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Examples of LGB actions}{34}{subsection.3.2}\protected@file@percent }
\newlabel{ex:LGBActingOnItself}{{3.12}{34}{LGB acting on itself}{theorem.3.12}{}}
\citation{mackenzieGeneralTheory}
\newlabel{ex:TrivialAction}{{3.14}{35}{Trivial action, \cite [\S 1.6, special situation of Ex.\ 1.6.3, page 35]{mackenzieGeneralTheory}}{theorem.3.14}{}}
\newlabel{ex:TrivialLGBAction}{{3.15}{35}{Actions of trivial LGBs}{theorem.3.15}{}}
\citation{mackenzieGeneralTheory}
\newlabel{ex:AssocLGACtingOnAssocVec}{{3.16}{36}{Inner group bundle acting on associated fibre bundles, \newline \cite [\S 1.6, simplified version of Ex.\ 1.6.4, page 35]{mackenzieGeneralTheory}}{theorem.3.16}{}}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{rem:ClassGaugeTrafosAndcgPMulti}{{3.17}{38}{Relation to automorphisms of principal bundles and gauge transformations}{theorem.3.17}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{prop:GaugeTrafoAndInnerLGB}{{3.18}{39}{Gauge transformations as sections of the inner LGB, \newline \cite [\S 1.4, (the last sentence of) Ex.\ 1.4.7, page 25]{mackenzieGeneralTheory}}{theorem.3.18}{}}
\newlabel{IsomCPGGTocGPSec}{{18}{40}{Examples of LGB actions}{equation.3.18}{}}
\BKM@entry{id=11,dest={73656374696F6E2E34},srcline={2334}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C303030735C3030305C3034305C3030305C3035305C3030304C5C303030415C303030425C303030735C3030305C303531}
\BKM@entry{id=12,dest={73756273656374696F6E2E342E31},srcline={2336}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {4}Lie algebra bundles (LABs)}{41}{section.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Definition}{41}{subsection.4.1}\protected@file@percent }
\citation{mackenzieGeneralTheory}
\newlabel{def:LAB}{{4.1}{42}{Lie algebra bundle (LAB), \cite [\S 3.3, Definition 3.3.8, page 104]{mackenzieGeneralTheory}}{theorem.4.1}{}}
\newlabel{ex:TrivialLABs}{{4.2}{42}{Trivial examples}{theorem.4.2}{}}
\newlabel{def:LABmorphism}{{4.3}{42}{LAB morphism, \newline \cite [\S . 4.3, simplified version of Def.\ 4.3.1, page 158]{mackenzieGeneralTheory}}{theorem.4.3}{}}
\newlabel{FibreRelationOverfForLABMorph}{{19}{42}{LAB morphism, \newline \cite [\S . 4.3, simplified version of Def.\ 4.3.1, page 158]{mackenzieGeneralTheory}}{equation.4.19}{}}
\citation{DaSilva}
\citation{mackenzieGeneralTheory}
\citation{PullbackLGBLAB}
\newlabel{LABHomomorph}{{21}{43}{LAB morphism, \newline \cite [\S . 4.3, simplified version of Def.\ 4.3.1, page 158]{mackenzieGeneralTheory}}{equation.4.21}{}}
\newlabel{rem:FieldOfLieBrackets}{{4.4}{43}{Smooth field of Lie brackets}{theorem.4.4}{}}
\newlabel{ex:EndVAnLAB}{{4.5}{43}{Endomorphisms of a vector bundle, \cite [\S 3.3, part of Ex.\ 3.3.4]{mackenzieGeneralTheory}}{theorem.4.5}{}}
\newlabel{cor:PullBackLABIsLAB}{{4.6}{43}{Pullbacks of LABs are LABs, \cite [\S 3, Thm.\ 3.2]{PullbackLGBLAB}}{theorem.4.6}{}}
\BKM@entry{id=13,dest={73756273656374696F6E2E342E32},srcline={2425}}{5C3337365C3337375C303030465C303030725C3030306F5C3030306D5C3030305C3034305C3030304C5C303030475C303030425C303030735C3030305C3034305C303030745C3030306F5C3030305C3034305C3030304C5C303030415C303030425C30303073}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{def:PullbackLABDef}{{4.7}{44}{Pullback LAB}{theorem.4.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}From LGBs to LABs}{44}{subsection.4.2}\protected@file@percent }
\newlabel{def:LeftRightTranslationConjugation}{{4.8}{44}{Left and right translation and conjugation, \newline \cite [\S 1.5, similar notation to Def.\ 1.5.3, page 40]{Hamilton}}{theorem.4.8}{}}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:LGBLeftinvariantVectorFields}{{4.10}{46}{Left-invariant vector fields on LGBs, \newline \cite [\S 3.5, special situation of Def.\ 3.5.2, page 120]{mackenzieGeneralTheory}}{theorem.4.10}{}}
\newlabel{rem:AbstractNotationForLeftInvarianceVf}{{4.12}{46}{Abstract notation 1}{theorem.4.12}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{lem:LeftInvVecAreClosed}{{4.13}{47}{Closure of Lie bracket for left-invariant vector fields, \newline \cite [\S 3.5, special situation of Lemma 3.5.5, page 122]{mackenzieGeneralTheory}}{theorem.4.13}{}}
\newlabel{cor:LeftInvVefCMModule}{{4.14}{47}{$L(\mathcal {G})$ a $C^\infty (M)$-module, \newline \cite [\S 3.5, comment before Lemma 3.5.5, page 122]{mackenzieGeneralTheory}}{theorem.4.14}{}}
\newlabel{cor:LeftInvVfToLAB}{{4.15}{48}{$L(\mathcal {G})$ as sections of $e^*\mathrm {V}\mathcal {G}$, \newline \cite [\S 3.5, comment before Lemma 3.5.5, page 122; parts of Cor.\ 3.5.4, page 121]{mackenzieGeneralTheory}}{theorem.4.15}{}}
\newlabel{rem:AbstractNotationTwoForLeftInvarVfs}{{4.16}{48}{Abstract notation 2}{theorem.4.16}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{cor:LGBToLAB}{{4.17}{50}{LGBs induce an LAB structure, \newline \cite [\S 3.5, simplified version of the discussion after Cor.\ 3.5.4, page 121ff.]{mackenzieGeneralTheory}}{theorem.4.17}{}}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:LABOfAnLGB}{{4.18}{51}{The LAB of an LGB, \newline \cite [\S 3.5, special situation of Def.\ 3.5.1, page 120]{mackenzieGeneralTheory}}{theorem.4.18}{}}
\newlabel{ex:EndosAreLABOfAutos}{{4.19}{51}{Endomorphisms of a vector bundle as LAB of fibre-wise automorphisms}{theorem.4.19}{}}
\newlabel{ex:AssociatedLABsFromAssocLGBs}{{4.20}{51}{Associated LAB}{theorem.4.20}{}}
\BKM@entry{id=14,dest={73756273656374696F6E2E342E33},srcline={2780}}{5C3337365C3337375C303030565C303030655C303030725C303030745C303030695C303030635C303030615C3030306C5C3030305C3034305C3030304D5C303030615C303030755C303030725C303030655C303030725C3030302D5C303030435C303030615C303030725C303030745C303030615C3030306E5C3030305C3034305C303030665C3030306F5C303030725C3030306D5C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030475C303030425C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Vertical Maurer-Cartan form of LGBs}{52}{subsection.4.3}\protected@file@percent }
\newlabel{cor:VertMCVormIsWellDefined}{{4.21}{52}{Well-definedness of the vertical Maurer-Cartan form}{theorem.4.21}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:MCFormOnLGBs}{{4.22}{53}{Vertical Maurer-Cartan form of LGBs, \newline \cite [generalization of Def.\ 3.5.2, page 148]{Hamilton}}{theorem.4.22}{}}
\newlabel{rem:RecoveringofClassicalMCForm}{{4.23}{53}{Recovering of the classical definition}{theorem.4.23}{}}
\newlabel{cor:TLGBAsLGB}{{4.24}{53}{Vertical tangent space of $\mathcal {G}$, \newline \cite [\S 3.5, a reformulation of Prop.\ 3.5.3, page 121]{mackenzieGeneralTheory}}{theorem.4.24}{}}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=15,dest={73756273656374696F6E2E342E34},srcline={2926}}{5C3337365C3337375C303030455C303030785C303030705C3030306F5C3030306E5C303030655C3030306E5C303030745C303030695C303030615C3030306C5C3030305C3034305C3030306D5C303030615C303030705C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030475C303030425C30303073}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Exponential map of LGBs}{54}{subsection.4.4}\protected@file@percent }
\newlabel{ExponentialMapSubsection}{{4.4}{54}{Exponential map of LGBs}{subsection.4.4}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\newlabel{def:ExpOfLGB}{{4.26}{55}{Exponential map, \newline \cite [\S 3.6, second part of Ex.\ 3.6.2, page 133f.]{mackenzieGeneralTheory}}{theorem.4.26}{}}
\newlabel{cor:ExpAsFlow}{{4.27}{55}{The exponential map as flow of $L(\mathcal {G})$, \newline \cite [discussion at the beginning of \S 3.6, Prop.\ 3.6.1 and its discussion afterwards; page 132f.]{mackenzieGeneralTheory}}{theorem.4.27}{}}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=16,dest={73756273656374696F6E2E342E35},srcline={3019}}{5C3337365C3337375C3030304C5C303030415C303030425C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030705C303030755C3030306C5C3030306C5C303030625C303030615C303030635C3030306B5C3030305C3034305C3030304C5C303030475C303030425C30303073}
\newlabel{rem:SimplyExpNotation}{{4.28}{56}{Simplifying notation related to the exponential map}{theorem.4.28}{}}
\citation{PullbackLGBLAB}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.5}LABs of pullback LGBs}{57}{subsection.4.5}\protected@file@percent }
\newlabel{cor:LABOfPullbackLGBIsPullbackLAB}{{4.29}{57}{LAB of pullback LGB is pullback LAB, \newline \cite [\S 3, Thm.\ 3.5, page 21]{PullbackLGBLAB}}{theorem.4.29}{}}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=17,dest={73656374696F6E2E35},srcline={3088}}{5C3337365C3337375C3030304C5C303030475C303030425C3030305C3034305C303030615C303030635C303030745C303030695C3030306F5C3030306E5C303030735C3030302C5C3030305C3034305C303030705C303030615C303030725C303030745C3030305C3034305C303030495C30303049}
\BKM@entry{id=18,dest={73756273656374696F6E2E352E31},srcline={3092}}{5C3337365C3337375C3030304C5C303030475C303030425C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C3030304C5C303030415C303030425C3030305C3034305C303030725C303030655C303030705C303030725C303030655C303030735C303030655C3030306E5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{mackenzieGeneralTheory}
\newlabel{rem:LABofPullBackNotation}{{4.30}{58}{LAB of $f^*\mathcal {G}$}{theorem.4.30}{}}
\newlabel{cor:LGBToLABHomomorphis}{{4.31}{58}{Differentials of LGB morphisms are LAB morphisms, \newline \cite [\S 3.5, section about morphisms, page 124f.]{mackenzieGeneralTheory}}{theorem.4.31}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5}LGB actions, part II}{58}{section.5}\protected@file@percent }
\newlabel{LGBActionIISection}{{5}{58}{LGB actions, part II}{section.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}LGB and LAB representations}{58}{subsection.5.1}\protected@file@percent }
\newlabel{def:LGBRep}{{5.1}{58}{LGB representations, \newline \cite [\S 1.7, special situation of the remark before Def.\ 1.7.1, page 43]{mackenzieGeneralTheory}}{theorem.5.1}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{cor:LGBRepAsLGBMorph}{{5.3}{59}{LGB representations as LGB morphisms, \newline \cite [\S 1.7, Prop.\ 1.7.2, page 43]{mackenzieGeneralTheory}}{theorem.5.3}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\newlabel{ex:LGRepsOnVecs}{{5.5}{60}{Recovering Lie group representations on vector spaces}{theorem.5.5}{}}
\newlabel{ex:AutosOfLABsAsLGB}{{5.6}{60}{Another LGB example: Automorphisms of LABs, \newline \cite [\S 1.7, special situation of Ex.\ 1.7.12, page 46]{mackenzieGeneralTheory}}{theorem.5.6}{}}
\newlabel{ex:LGBAdjointRep}{{5.7}{60}{Adjoint LGB representation, \newline \cite [\S 3.5, special situation of Prop.\ 3.5.20, page 131]{mackenzieGeneralTheory}}{theorem.5.7}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:LABACtions}{{5.8}{61}{LAB actions, \newline \cite [\S 4.1, reformulated version for LABs of Def.\ 4.1.1, page 149]{mackenzieGeneralTheory}}{theorem.5.8}{}}
\newlabel{LABActionAlongFibres}{{24}{61}{LAB actions, \newline \cite [\S 4.1, reformulated version for LABs of Def.\ 4.1.1, page 149]{mackenzieGeneralTheory}}{equation.5.24}{}}
\newlabel{ActionLieAlgebroidButNonTrivial}{{25}{61}{LAB actions, \newline \cite [\S 4.1, reformulated version for LABs of Def.\ 4.1.1, page 149]{mackenzieGeneralTheory}}{equation.5.25}{}}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{lem:LGBInduceLABAction}{{5.10}{62}{LGB actions induce LAB actions, \newline \cite [\S 4.1, special situation of Thm.\ 4.1.6, page 152]{mackenzieGeneralTheory}}{theorem.5.10}{}}
\newlabel{LeftActionsAndTheirSignProblem}{{5.11}{62}{}{theorem.5.11}{}}
\citation{Hamilton}
\newlabel{PhiRelatedSections}{{26}{63}{LGB and LAB representations}{equation.5.26}{}}
\newlabel{rem:LABHomomorpInActionVariants}{{5.12}{63}{Variants of the LAB action as Lie algebra homomorphism}{theorem.5.12}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{MyThesis}
\newlabel{def:LABReps}{{5.13}{64}{LAB representations, \cite [\S 3.3, Def.\ 3.3.13, page 107]{mackenzieGeneralTheory}}{theorem.5.13}{}}
\newlabel{cor:LABRepsAreLABActions}{{5.14}{64}{LAB representations are specific LAB actions, \newline \cite [\S 4.1, special consequence of Prop.\ 4.1.7 but we do not assume integrability of the LAB, page 153]{mackenzieGeneralTheory}}{theorem.5.14}{}}
\citation{MyThesis}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=19,dest={73756273656374696F6E2E352E32},srcline={3457}}{5C3337365C3337375C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C3030305C3034305C303030765C303030655C303030635C303030745C3030306F5C303030725C3030305C3034305C303030665C303030695C303030655C3030306C5C303030645C30303073}
\citation{Hamilton}
\newlabel{ex:LABAdjointRep}{{5.16}{65}{Adjoint LAB representations, \newline \cite [\S 3.3, special situation of Ex.\ 3.3.15, page 108]{mackenzieGeneralTheory}}{theorem.5.16}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Fundamental vector fields}{66}{subsection.5.2}\protected@file@percent }
\newlabel{def:FundVecs}{{5.17}{66}{Fundamental vector fields}{theorem.5.17}{}}
\newlabel{rem:FundVecsNotations}{{5.18}{66}{Notation}{theorem.5.18}{}}
\BKM@entry{id=20,dest={73756273656374696F6E2E352E33},srcline={3524}}{5C3337365C3337375C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030735C3030306D5C3030306F5C3030306F5C303030745C303030685C3030305C3034305C3030304C5C303030475C303030425C3030305C3034305C303030615C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\newlabel{rem:FundVecsAreLABActions}{{5.19}{67}{Map to fundamental vector fields an LAB action}{theorem.5.19}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Differential of smooth LGB actions}{67}{subsection.5.3}\protected@file@percent }
\newlabel{lem:PullbackFibreBundleItsTangentSp}{{5.20}{67}{Tangent bundle of pullback fibre bundles}{theorem.5.20}{}}
\newlabel{thm:DiffOfLGBAction}{{5.21}{68}{Differential of smooth LGB actions}{theorem.5.21}{}}
\newlabel{NewDIffACtionwithMCForm}{{27}{68}{Differential of smooth LGB actions}{equation.5.27}{}}
\newlabel{DIFfActionSimilarToTangenGroupoid}{{29}{68}{Differential of smooth LGB actions}{equation.5.29}{}}
\newlabel{DiffActionAsClassicalButWithExtraContribution}{{30}{69}{Differential of smooth LGB actions}{equation.5.30}{}}
\newlabel{DifferentialOfActionSplitFirst}{{31}{70}{Differential of smooth LGB actions}{equation.5.31}{}}
\newlabel{ClassicalWayToWriteLeibnizRuleWithLeftPushForwardInsteadOfMCForm}{{32}{70}{Differential of smooth LGB actions}{equation.5.32}{}}
\citation{Hamilton}
\citation{Hamilton}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=21,dest={73656374696F6E2E36},srcline={3875}}{5C3337365C3337375C303030435C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030635C303030755C303030725C303030765C303030615C303030745C303030755C303030725C303030655C3030305C3034305C3030306F5C3030306E5C3030305C3034305C303030705C303030725C303030695C3030306E5C303030635C303030695C303030705C303030615C3030306C5C3030305C3034305C3030304C5C303030475C303030425C3030302D5C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\BKM@entry{id=22,dest={73756273656374696F6E2E362E31},srcline={3877}}{5C3337365C3337375C303030505C303030725C303030695C3030306E5C303030635C303030695C303030705C303030615C3030306C5C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C303030735C3030305C3034305C303030775C303030695C303030745C303030685C3030305C3034305C303030735C303030745C303030725C303030755C303030635C303030745C303030755C303030725C303030615C3030306C5C3030305C3034305C3030304C5C303030475C30303042}
\BKM@entry{id=23,dest={73756273756273656374696F6E2E362E312E31},srcline={3879}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E}
\citation{GroupoidBasedPrincipalBundles}
\@writefile{toc}{\contentsline {section}{\numberline {6}Connections and curvature on principal LGB-bundles}{72}{section.6}\protected@file@percent }
\newlabel{ConnCurvOnPrincLGBBundle}{{6}{72}{Connections and curvature on principal LGB-bundles}{section.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Principal bundles with structural LGB}{72}{subsection.6.1}\protected@file@percent }
\newlabel{PrincBundlLGBBased}{{6.1}{72}{Principal bundles with structural LGB}{subsection.6.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.1.1}Definition}{72}{subsubsection.6.1.1}\protected@file@percent }
\citation{GroupoidBasedPrincipalBundles}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{def:PrinciBdleWithStruLGB}{{6.1}{73}{Principal bundles with structural LGB, \newline \cite [simplification of the beginning of \S 5.7, page 144f.]{GroupoidBasedPrincipalBundles}}{theorem.6.1}{}}
\newlabel{rem:LGBPrincDefDiscussion}{{6.2}{73}{Discussion about the definition of $\mathcal {G}$-principal bundles}{theorem.6.2}{}}
\BKM@entry{id=24,dest={73756273756273656374696F6E2E362E312E32},srcline={3957}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C30303073}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.1.2}Examples}{74}{subsubsection.6.1.2}\protected@file@percent }
\BKM@entry{id=25,dest={73756273756273656374696F6E2E362E312E33},srcline={3978}}{5C3337365C3337375C3030304D5C3030306F5C303030725C303030705C303030685C303030695C303030735C3030306D5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030705C303030725C303030695C3030306E5C303030635C303030695C303030705C303030615C3030306C5C3030305C3034305C3030304C5C303030475C303030425C3030302D5C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\newlabel{ex:TheCLassicalPrincAsEx}{{6.3}{75}{The "classical" principal bundle}{theorem.6.3}{}}
\newlabel{ex:TrivialPrincAsLGB}{{6.4}{75}{The "trivial" principal $\mathcal {G}$-bundle}{theorem.6.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.1.3}Morphism of principal LGB-bundles}{75}{subsubsection.6.1.3}\protected@file@percent }
\newlabel{def:MorphOfPrincBundles}{{6.5}{75}{Morphism of principal bundles with structural LGB}{theorem.6.5}{}}
\newlabel{PrincMorphoverBaseMap}{{33}{76}{Morphism of principal bundles with structural LGB}{equation.6.33}{}}
\newlabel{PrincMorphLGBEquiv}{{34}{76}{Morphism of principal bundles with structural LGB}{equation.6.34}{}}
\citation{GroupoidBasedPrincipalBundles}
\citation{Hamilton}
\newlabel{lem:SectionsNowInduceIsomToLGBsNotNecTriv}{{6.7}{78}{Local sections of principal bundles induce isomorphisms to the structural LGB}{theorem.6.7}{}}
\newlabel{DiffOfOrbitMap}{{35}{79}{Morphism of principal LGB-bundles}{equation.6.35}{}}
\newlabel{DecomposingTheLGBVectorfieldsWithsections}{{36}{79}{Morphism of principal LGB-bundles}{equation.6.36}{}}
\newlabel{DsigmaIsASPlitting}{{37}{79}{Morphism of principal LGB-bundles}{equation.6.37}{}}
\citation{Hamilton}
\citation{GroupoidBasedPrincipalBundles}
\newlabel{cor:PullBacksArePrincToo}{{6.9}{81}{Pullbacks of principal LGB-bundles are principal LGB-bundles}{theorem.6.9}{}}
\newlabel{def:PullbackPrincBundleDef}{{6.11}{82}{Pullback principal bundle}{theorem.6.11}{}}
\newlabel{cor:ProductSpaceIsPItself}{{6.12}{82}{$\mathcal {P}*\mathcal {G}$ is the pullback of $\mathcal {P}$ along its projection}{theorem.6.12}{}}
\newlabel{AlternativePrincBdlDef}{{6.13}{82}{}{theorem.6.13}{}}
\citation{GroupoidBasedPrincipalBundles}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{rem:ItIsAPrincipalAction}{{6.14}{83}{Why "principal"?}{theorem.6.14}{}}
\newlabel{def:GaugesOfPrincipalBundles}{{6.15}{83}{Gauges of a principal bundle}{theorem.6.15}{}}
\BKM@entry{id=26,dest={73756273656374696F6E2E362E32},srcline={4355}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C303030695C3030307A5C303030655C303030645C3030305C3034305C303030645C303030695C303030735C303030745C303030725C303030695C303030625C303030755C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{OtherPreprintAboutConnection}
\citation{OtherPreprintAboutConnection}
\citation{OtherPreprintAboutConnection}
\citation{OtherPreprintAboutConnection}
\citation{CurvedYMH}
\citation{MyThesis}
\citation{Hamilton}
\citation{Hamilton}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Generalized distributions and connections}{84}{subsection.6.2}\protected@file@percent }
\newlabel{ConnectionSubsection}{{6.2}{84}{Generalized distributions and connections}{subsection.6.2}{}}
\newlabel{rem:AnotherPreprintWork}{{6.16}{84}{References for connections on principal LGB-bundles}{theorem.6.16}{}}
\newlabel{def:EhresmannConnectionBasics}{{6.17}{84}{Horizontal distribution, \newline \cite [\S 5.1.2, Def.\ 5.1.6, page 260; without the symmetry along right-translations here]{Hamilton}}{theorem.6.17}{}}
\citation{Hamilton}
\newlabel{cor:VerticalBundleOfPrincIsNearlyAsUsual}{{6.18}{85}{The natural invariance of the vertical bundle of $\mathcal {P}$}{theorem.6.18}{}}
\newlabel{SymmetryOfTheVerticalBundle}{{38}{85}{The natural invariance of the vertical bundle of $\mathcal {P}$}{equation.6.38}{}}
\newlabel{FundVecAsMapIsIsom}{{40}{85}{The natural invariance of the vertical bundle of $\mathcal {P}$}{equation.6.40}{}}
\newlabel{rem:FundVecNotationOnPullbackBundle}{{6.19}{85}{Extending the notation of fundamental vector fields}{theorem.6.19}{}}
\BKM@entry{id=27,dest={73756273756273656374696F6E2E362E322E31},srcline={4434}}{5C3337365C3337375C303030495C303030645C303030655C303030615C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C3030306D5C3030306F5C303030745C303030695C303030765C303030615C303030745C303030695C3030306F5C3030306E}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.2.1}Idea and motivation}{86}{subsubsection.6.2.1}\protected@file@percent }
\newlabel{TheBigMotivationBehindEverything}{{6.2.1}{86}{Idea and motivation}{subsubsection.6.2.1}{}}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{ClassicalSymmetryOfHorizontalDistr}{{41}{87}{Idea and motivation}{equation.6.41}{}}
\newlabel{PTProp1}{{42}{87}{Idea and motivation}{equation.6.42}{}}
\newlabel{PTProp2}{{43}{87}{Idea and motivation}{equation.6.43}{}}
\newlabel{ClassicalSymmetryofPTs}{{44}{87}{Idea and motivation}{equation.6.44}{}}
\newlabel{PTHomomNEw}{{45}{88}{Idea and motivation}{equation.6.45}{}}
\newlabel{OiTHatIsHowWeFormulateHorizSymmetry}{{46}{89}{Idea and motivation}{equation.6.46}{}}
\BKM@entry{id=28,dest={73756273756273656374696F6E2E362E322E32},srcline={4967}}{5C3337365C3337375C303030445C303030615C303030725C303030625C3030306F5C303030755C303030785C3030305C3034305C303030645C303030655C303030725C303030695C303030765C303030615C303030745C303030695C303030765C303030655C3030305C3034305C3030306F5C3030306E5C3030305C3034305C3030304C5C303030475C303030425C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Push-forward of a horizontal tangent vector $X$ with constant section (left) and general section (right), where $\mathcal {P}$ is a classical principal bundle as in Ex.\ \ref {ex:TheCLassicalPrincAsEx} equipped with a "typical" connection $\mathrm {H}\mathcal {P}$ of principal $G$-bundles ($G$ the structural Lie group).}}{90}{figure.1}\protected@file@percent }
\newlabel{fig:Pushforwardwandwithoutparallelsection}{{1}{90}{Push-forward of a horizontal tangent vector $X$ with constant section (left) and general section (right), where $\mathcal {P}$ is a classical principal bundle as in Ex.\ \ref {ex:TheCLassicalPrincAsEx} equipped with a "typical" connection $\mathrm {H}\mathcal {P}$ of principal $G$-bundles ($G$ the structural Lie group)}{figure.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.2.2}Darboux derivative on LGBs}{90}{subsubsection.6.2.2}\protected@file@percent }
\newlabel{DiscussingDarbouxDerivativeGeneral}{{6.2.2}{90}{Darboux derivative on LGBs}{subsubsection.6.2.2}{}}
\newlabel{rem:GeneralPullBackLGBConnSituation}{{6.20}{90}{Pullback LGBs and their connections}{theorem.6.20}{}}
\newlabel{def:TotMCFormOnLGB}{{6.21}{91}{Total Maurer-Cartan form}{theorem.6.21}{}}
\newlabel{rem:PullbackTotMCForm}{{6.22}{91}{Pullback situation: Part I}{theorem.6.22}{}}
\newlabel{rem:TrivialLGBsAndTheirMCForm}{{6.23}{92}{Total Maurer-Cartan form just typical form on trivial LGBs}{theorem.6.23}{}}
\citation{mackenzieGeneralTheory}
\newlabel{rem:MCFormAGeneralizationOfDerivative}{{6.24}{93}{Maurer-Cartan form inducing a natural derivative: Part I}{theorem.6.24}{}}
\newlabel{def:DarbouxDerivativeOnLGBs}{{6.25}{93}{Generalised Darboux derivative}{theorem.6.25}{}}
\newlabel{RemarkABoutDarbouxNotationWRTPullback}{{6.26}{93}{}{theorem.6.26}{}}
\citation{mackenzieGeneralTheory}
\newlabel{rem:MCAsDerivativePartII}{{6.27}{94}{Maurer-Cartan form inducing a natural derivative: Part II}{theorem.6.27}{}}
\newlabel{NablaByProjection}{{47}{94}{Maurer-Cartan form inducing a natural derivative: Part II}{equation.6.47}{}}
\newlabel{rem:PullBackDarboux}{{6.28}{95}{Pullback situation: Part II}{theorem.6.28}{}}
\newlabel{PullBackDarbouxOnPullbackSections}{{48}{95}{Pullback situation: Part II}{equation.6.48}{}}
\newlabel{rem:DarbouxOnCanonFlat}{{6.29}{95}{Canonical flat Darboux derivative}{theorem.6.29}{}}
\newlabel{rem:DarbouxInActionInfinit}{{6.30}{96}{Darboux derivative in the infinitesimal LGB action}{theorem.6.30}{}}
\newlabel{rem:DefOfConnectionIdeaWithDarboux}{{6.31}{97}{Idea behind the notion of connection on principal bundles using the Darboux derivative}{theorem.6.31}{}}
\newlabel{prop:FinallyTheNablaInduction}{{6.32}{97}{LGB connection induces LAB connection}{theorem.6.32}{}}
\newlabel{RemarkAboutPrTwoInDarbouxDerivative}{{6.33}{97}{}{theorem.6.33}{}}
\newlabel{DiagramForNablaConn}{{49}{98}{Darboux derivative on LGBs}{equation.6.49}{}}
\newlabel{EqForNablaConnectionWithFlip}{{50}{98}{Darboux derivative on LGBs}{equation.6.50}{}}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{Hamilton}
\newlabel{def:ConnectionOnLAB}{{6.34}{101}{LGB connection on its LAB}{theorem.6.34}{}}
\newlabel{PTLABComingFromPTLGB}{{6.35}{101}{}{theorem.6.35}{}}
\newlabel{ex:CanonicalFlatGConnection}{{6.36}{101}{Canonical flat $\mathcal {G}$-connection}{theorem.6.36}{}}
\newlabel{rem:PullBackConnectionOfNablaG}{{6.37}{101}{Pullback situation: Part III}{theorem.6.37}{}}
\BKM@entry{id=29,dest={73756273756273656374696F6E2E362E322E33},srcline={5789}}{5C3337365C3337375C303030465C303030695C303030725C303030735C303030745C3030305C3034305C303030735C303030745C303030655C303030705C3030305C3034305C303030745C3030306F5C303030775C303030615C303030725C303030645C303030735C3030305C3034305C303030745C3030306F5C303030775C303030615C303030725C303030645C303030735C3030305C3034305C303030615C303030735C303030735C3030306F5C303030635C303030695C303030615C303030745C303030655C303030645C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.2.3}First step towards towards associated bundles}{102}{subsubsection.6.2.3}\protected@file@percent }
\newlabel{prop:CanonicalLGBActionForAssociatedBundles}{{6.38}{103}{Canonical LGB action on pullback bundles over principal LGB-bundles}{theorem.6.38}{}}
\newlabel{ex:AdjointACtionOnVP}{{6.39}{104}{Adjoint action on the vertical bundle of $\mathcal {P}$}{theorem.6.39}{}}
\newlabel{ex:ConjugationActionForTheGeneralInnerGroupBundle}{{6.40}{104}{Conjugation action over $\mathcal {P}$}{theorem.6.40}{}}
\BKM@entry{id=30,dest={73756273756273656374696F6E2E362E322E34},srcline={5901}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C303030695C3030307A5C303030655C303030645C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030315C3030302D5C303030665C3030306F5C303030725C3030306D5C303030735C3030305C3034305C3030306F5C3030306E5C3030305C3034305C303030705C303030725C303030695C3030306E5C303030635C303030695C303030705C303030615C3030306C5C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\citation{Hamilton}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.2.4}Generalized connection 1-forms on principal bundles}{105}{subsubsection.6.2.4}\protected@file@percent }
\newlabel{prop:IsomorphismRightPushAndDarboux}{{6.41}{105}{The right-pushforward modified by the Darboux derivative is a well-defined isomorphism}{theorem.6.41}{}}
\newlabel{def:WeModTheRIghtPush}{{6.42}{107}{Modified pushforward via right-translation}{theorem.6.42}{}}
\newlabel{rem:ModRightPushOnVertic}{{6.43}{107}{Restriction onto vertical bundle gives typical right-pushforward}{theorem.6.43}{}}
\citation{GroupoidBasedPrincipalBundles}
\newlabel{RSigmaAnAuto}{{6.44}{108}{}{theorem.6.44}{}}
\newlabel{def:FinallyTheConnection}{{6.45}{108}{Ehresmann connection on principal LGB-bundles}{theorem.6.45}{}}
\citation{Hamilton}
\newlabel{ex:OurConnectionIsReallyMoreGeneral}{{6.47}{109}{Recovering of the classical definition}{theorem.6.47}{}}
\newlabel{ex:AssociatedLGBsAndTheirCanonicalConnection}{{6.48}{109}{Associated LGBs}{theorem.6.48}{}}
\newlabel{def:PullbackOfFormsViaModRight}{{6.49}{110}{The pullback of forms via modified right-pushforward}{theorem.6.49}{}}
\newlabel{def:GaugeBosonsOnLGBPrincies}{{6.51}{110}{Connection 1-forms on principal LGB-bundles}{theorem.6.51}{}}
\citation{mackenzieGeneralTheory}
\newlabel{PointwiseNotationOfConnectioNOneForms}{{6.52}{111}{}{theorem.6.52}{}}
\citation{Hamilton}
\citation{Hamilton}
\newlabel{thm:OurConnectionHasAUniqueoneForm}{{6.53}{112}{1:1 correspondence of Ehresmann connections and connection 1-forms}{theorem.6.53}{}}
\BKM@entry{id=31,dest={73756273656374696F6E2E362E33},srcline={6380}}{5C3337365C3337375C303030475C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C30303073}
\newlabel{cor:ModifiedRightPushyCommutesWithProj}{{6.54}{114}{Commutation of modified push-forward and projections}{theorem.6.54}{}}
\newlabel{RemOohThesePullbacksConfusOrNotToConfus}{{6.55}{114}{}{theorem.6.55}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Gauge transformations}{114}{subsection.6.3}\protected@file@percent }
\newlabel{GaugeTrafoForA}{{6.3}{114}{Gauge transformations}{subsection.6.3}{}}
\newlabel{def:GaugeTrafosLGBMaps}{{6.56}{114}{LGB-valued conjugation maps}{theorem.6.56}{}}
\newlabel{rem:GroupStructureOnCInftPGG}{{6.57}{115}{Group structure on $C^\infty (\mathcal {P}; \mathcal {G})^{\mathcal {G}}$}{theorem.6.57}{}}
\newlabel{MultiWithPulli}{{51}{115}{Gauge transformations}{equation.6.51}{}}
\newlabel{prop:GaugeTrafoAsBundleIsomIsASectionOfConjugationMaps}{{6.58}{115}{Gauge transformations as $\mathcal {G}$-valued conjugation maps}{theorem.6.58}{}}
\newlabel{thm:GaugeTrafoOfGaugeBoson}{{6.59}{117}{Gauge transformations of connection 1-forms}{theorem.6.59}{}}
\newlabel{GaugeTrafoDiffOnFUndVect}{{52}{118}{Gauge transformations}{equation.6.52}{}}
\newlabel{DiffOfPrincAutom}{{53}{119}{Gauge transformations}{equation.6.53}{}}
\citation{Hamilton}
\newlabel{def:LocalGaugeField}{{6.60}{120}{Local gauge field}{theorem.6.60}{}}
\newlabel{PullBackGaugeFieldRemark}{{6.61}{120}{}{theorem.6.61}{}}
\citation{Hamilton}
\newlabel{prop:GaugeTrafosAsLGBSectionsLocal}{{6.62}{121}{Gauge transformations and sections of the structural LGB}{theorem.6.62}{}}
\newlabel{rem:OtherNotationForLGBSectionsAsGaugeTrafo}{{6.63}{121}{Other notation}{theorem.6.63}{}}
\newlabel{prop:GaugeChangeAsBundleAutomorph}{{6.64}{123}{Change of gauge as a local bundle automorphism}{theorem.6.64}{}}
\newlabel{thm:LocalGaugeTrafoChangeGauge}{{6.65}{124}{Gauge transformations as a change of gauge in the local gauge field}{theorem.6.65}{}}
\citation{CurvedYMH}
\citation{MyThesis}
\citation{My1stpaper}
\citation{MyThesis}
\citation{EichtrafoKruemmungUrspruenglich}
\citation{mayerlieAuchEichtrafoStuff}
\newlabel{rem:IntegratingKotovStrobl}{{6.66}{126}{Integrating curved Yang-Mills gauge theories, part I}{theorem.6.66}{}}
\newlabel{rem:ClosureOfGaugeTrafos}{{6.67}{126}{Closure of gauge transformations}{theorem.6.67}{}}
\BKM@entry{id=32,dest={73756273656374696F6E2E362E34},srcline={7218}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C303030695C3030307A5C303030655C303030645C3030305C3034305C303030635C303030755C303030725C303030765C303030615C303030745C303030755C303030725C303030655C3030302F5C303030665C303030695C303030655C3030306C5C303030645C3030305C3034305C303030735C303030745C303030725C303030655C3030306E5C303030675C303030745C30303068}
\BKM@entry{id=33,dest={73756273756273656374696F6E2E362E342E31},srcline={7220}}{5C3337365C3337375C303030595C303030615C3030306E5C303030675C3030302D5C3030304D5C303030695C3030306C5C3030306C5C303030735C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C3030306F5C3030306E5C3030305C3034305C3030304C5C303030475C303030425C30303073}
\citation{CurvedYMH}
\citation{MyThesis}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Generalized curvature/field strength}{127}{subsection.6.4}\protected@file@percent }
\newlabel{CurvatureSubsection}{{6.4}{127}{Generalized curvature/field strength}{subsection.6.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.1}Yang-Mills connections on LGBs}{127}{subsubsection.6.4.1}\protected@file@percent }
\newlabel{MultiplicativeForms}{{6.4.1}{127}{Yang-Mills connections on LGBs}{subsubsection.6.4.1}{}}
\newlabel{def:YangMillsConnection}{{6.68}{127}{Infinitesimal Yang-Mills connection}{theorem.6.68}{}}
\newlabel{CondSGleichNullLAB}{{54}{127}{Infinitesimal Yang-Mills connection}{equation.6.54}{}}
\newlabel{CondKruemmungmitBLAB}{{55}{127}{Infinitesimal Yang-Mills connection}{equation.6.55}{}}
\citation{MyThesis}
\citation{My1stpaper}
\citation{mackenzieGeneralTheory}
\citation{MyThesis}
\citation{My1stpaper}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{FernandesMarcutMultiplicativeForms}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\newlabel{MackenziesStuffRelation}{{6.69}{128}{}{theorem.6.69}{}}
\newlabel{lem:YangMillsConnAnEhresmann}{{6.70}{128}{Ehresmann connections induce Lie bracket derivations, \newline \cite [\S 4.5, Prop.\ 4.21]{LAURENTGENGOUXStienonXuMultiplicativeForms}}{theorem.6.70}{}}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{crainic2015multiplicative}
\newlabel{rem:baseManifoldHoriz}{{6.71}{129}{Base manifold a horizontal leave}{theorem.6.71}{}}
\newlabel{cor:TotMCFormIsConnectionForm}{{6.72}{129}{The total Maurer-Cartan form as connection 1-form}{theorem.6.72}{}}
\newlabel{rem:DavouxderivativeALocalGaugeField}{{6.73}{129}{Darboux derivative as local gauge field}{theorem.6.73}{}}
\newlabel{def:MultiplicativeFormsDef}{{6.74}{129}{Multiplicative forms, \cite [\S 2.1, special situation of Def.\ 2.1]{crainic2015multiplicative}}{theorem.6.74}{}}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\newlabel{sloppynotationformultiplicativity}{{6.75}{130}{}{theorem.6.75}{}}
\newlabel{thm:TotMaurerIsMultiplicativeIfSEqual0}{{6.76}{130}{Ehresmann connection 1-forms on LGBs are multiplicative, \newline \cite [\S 4.4, implication of Lemma 4.14]{LAURENTGENGOUXStienonXuMultiplicativeForms}}{theorem.6.76}{}}
\citation{mackenzieGeneralTheory}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\newlabel{prop:DarbouxLeibnizRule}{{6.77}{131}{Leibniz rule of the Darboux derivative}{theorem.6.77}{}}
\newlabel{lem:FieldRedefViaLGBSection}{{6.79}{132}{The conjugation of the canonical LAB connection is a Yang-Mills connection}{theorem.6.79}{}}
\newlabel{SpecialFieldRedef}{{56}{132}{The conjugation of the canonical LAB connection is a Yang-Mills connection}{equation.6.56}{}}
\newlabel{AlmostGeneralizedMaurerCartanEquation}{{57}{132}{The conjugation of the canonical LAB connection is a Yang-Mills connection}{equation.6.57}{}}
\citation{Hamilton}
\citation{My1stpaper}
\citation{MyThesis}
\citation{Hamilton}
\citation{FernandesMarcutMultiplicativeForms}
\citation{Hamilton}
\newlabel{lem:BracketVertHor}{{6.80}{134}{Lie bracket of horizontal and vertical vector}{theorem.6.80}{}}
\newlabel{thm:GenMCEq}{{6.82}{136}{Generalized Maurer-Cartan equation}{theorem.6.82}{}}
\newlabel{THEGeneralizedMCEq}{{58}{136}{Generalized Maurer-Cartan equation}{equation.6.58}{}}
\newlabel{BasePointDifficultiesinGenMCEq}{{6.83}{136}{}{theorem.6.83}{}}
\citation{bursztyn2004integration}
\newlabel{rem:ClassicalMCEqinGeneralizedOne}{{6.84}{137}{Classical Maurer-Cartan equation recovered}{theorem.6.84}{}}
\citation{My1stpaper}
\citation{MyThesis}
\newlabel{PullbackofMCGeneralCurvPlusExtra}{{59}{139}{Yang-Mills connections on LGBs}{equation.6.59}{}}
\newlabel{PullbackofMCEqGivesCurv}{{60}{140}{Yang-Mills connections on LGBs}{equation.6.60}{}}
\newlabel{cor:PullbackOfMCSupperEquation}{{6.85}{141}{Pullback of generalized Maurer-Cartan equation}{theorem.6.85}{}}
\newlabel{def:NowReallyYangMillsConnectio}{{6.86}{141}{Yang-Mills connection}{theorem.6.86}{}}
\citation{crainic2003differentiable}
\citation{FernandesMarcutMultiplicativeForms}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{FernandesMarcutMultiplicativeForms}
\newlabel{rem:YangMillsEqualsInfYM}{{6.87}{142}{Yang-Mills connections integrate infinitesimal Yang-Mills connections}{theorem.6.87}{}}
\newlabel{rem:SimplicialDifferentialStuff}{{6.88}{142}{Relation to simplicial differential}{theorem.6.88}{}}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Infinitesimal compatibility conditions on the LAB $\mathcal {g}$}}{143}{table.1}\protected@file@percent }
\newlabel{tab:CompatibilityConditionsOnLGBAndItsLAB}{{1}{143}{Infinitesimal compatibility conditions on the LAB $\mathcal {g}$}{table.1}{}}
\newlabel{ex:ClassicalYangMillsConnection}{{6.89}{143}{(Pre-)Classical Yang-Mills connection}{theorem.6.89}{}}
\newlabel{ex:OurVeryImportantExample}{{6.90}{143}{Associated connections of inner group bundles are Yang-Mills connections}{theorem.6.90}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{Hamilton}
\newlabel{ex:NablaYMAsAdjointConnection}{{6.91}{144}{Yang-Mills connections on inner group bundles: Alternative point of view and explanation}{theorem.6.91}{}}
\BKM@entry{id=34,dest={73756273756273656374696F6E2E362E342E32},srcline={8365}}{5C3337365C3337375C303030465C303030695C303030655C3030306C5C303030645C3030305C3034305C303030735C303030745C303030725C303030655C3030306E5C303030675C303030745C303030685C3030305C3034305C303030725C303030655C3030306C5C303030615C303030745C303030655C303030645C3030305C3034305C303030745C3030306F5C3030305C3034305C303030595C303030615C3030306E5C303030675C3030302D5C3030304D5C303030695C3030306C5C3030306C5C303030735C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.2}Field strength related to Yang-Mills connections}{145}{subsubsection.6.4.2}\protected@file@percent }
\newlabel{def:NewFieldStrength}{{6.92}{145}{(Generalized) Field strength}{theorem.6.92}{}}
\newlabel{prop:NewFieldStrengthWithCoolProps}{{6.93}{146}{Properties of the generalized field strength}{theorem.6.93}{}}
\citation{Hamilton}
\newlabel{TransformedClassicStrengthTerm}{{61}{148}{Field strength related to Yang-Mills connections}{equation.6.61}{}}
\citation{Hamilton}
\citation{FernandesMarcutMultiplicativeForms}
\citation{Hamilton}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{FernandesMarcutMultiplicativeForms}
\newlabel{thm:StructureEq}{{6.94}{150}{Structure equation of the generalized field strength}{theorem.6.94}{}}
\newlabel{rem:CurvoftotMCForm}{{6.95}{150}{The generalized field strength of the total Maurer-Cartan form}{theorem.6.95}{}}
\newlabel{ZetaIsTheCurvatureOnG}{{62}{150}{The generalized field strength of the total Maurer-Cartan form}{equation.6.62}{}}
\citation{My1stpaper}
\citation{MyThesis}
\citation{MyThesis}
\BKM@entry{id=35,dest={73756273756273656374696F6E2E362E342E33},srcline={8923}}{5C3337365C3337375C303030475C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030675C303030655C3030306E5C303030655C303030725C303030615C3030306C5C303030695C3030307A5C303030655C303030645C3030305C3034305C303030665C303030695C303030655C3030306C5C303030645C3030305C3034305C303030735C303030745C303030725C303030655C3030306E5C303030675C303030745C30303068}
\newlabel{thm:GenBianchi}{{6.96}{152}{Generalized Bianchi identity, \cite [\S 5, Thm.\ 5.1.42]{MyThesis}}{theorem.6.96}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.3}Gauge transformation of the generalized field strength}{152}{subsubsection.6.4.3}\protected@file@percent }
\newlabel{thm:GaugeTrafoOfCurv}{{6.97}{152}{Gauge transformation of the generalized field strength}{theorem.6.97}{}}
\newlabel{def:LocalFieldStrength}{{6.98}{153}{Local field strength}{theorem.6.98}{}}
\newlabel{cor:PullbackOfStructureEq}{{6.99}{153}{Pullback of the structure equation}{theorem.6.99}{}}
\citation{CurvedYMH}
\citation{MyThesis}
\citation{My1stpaper}
\BKM@entry{id=36,dest={73656374696F6E2E37},srcline={9037}}{5C3337365C3337375C303030435C303030755C303030725C303030765C303030655C303030645C3030305C3034305C303030595C303030615C3030306E5C303030675C3030302D5C3030304D5C303030695C3030306C5C3030306C5C303030735C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C30303079}
\BKM@entry{id=37,dest={73756273656374696F6E2E372E31},srcline={9039}}{5C3337365C3337375C303030445C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030695C3030306E5C303030765C303030615C303030725C303030695C303030615C3030306E5C303030635C30303065}
\newlabel{thm:LocalGaugeTrafoChangeGaugeFieldStrength}{{6.100}{154}{Gauge transformations again as a change of gauge}{theorem.6.100}{}}
\newlabel{rem:IntegratingKotovStroblFieldStrength}{{6.101}{154}{Integrating curved Yang-Mills gauge theories, part II}{theorem.6.101}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7}Curved Yang-Mills gauge theory}{154}{section.7}\protected@file@percent }
\newlabel{CYMSection}{{7}{154}{Curved Yang-Mills gauge theory}{section.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Definition and gauge invariance}{154}{subsection.7.1}\protected@file@percent }
\newlabel{CYMDefGaugeInv}{{7.1}{154}{Definition and gauge invariance}{subsection.7.1}{}}
\newlabel{cor:ContractionOfLocalFIeldWellDefined}{{7.1}{155}{Contraction of local field strength with Ad-invariant fibre metric is well-defined}{theorem.7.1}{}}
\newlabel{def:CYMGTFinally}{{7.2}{155}{Curved Yang-Mills gauge theory}{theorem.7.2}{}}
\newlabel{thm:GaugeInvarianceOfLagrangian}{{7.3}{155}{Gauge invariance of the curved Yang-Mills Lagrangian}{theorem.7.3}{}}
\citation{CurvedYMH}
\citation{MyThesis}
\citation{My1stpaper}
\BKM@entry{id=38,dest={73756273656374696F6E2E372E32},srcline={9120}}{5C3337365C3337375C303030465C303030695C303030655C3030306C5C303030645C3030305C3034305C303030725C303030655C303030645C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E5C30303073}
\newlabel{rem:InfinitesimalGaugeInv}{{7.4}{156}{Infinitesimal gauge invariance}{theorem.7.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Field redefinitions}{156}{subsection.7.2}\protected@file@percent }
\newlabel{def:FieldRedefsAsDefIntegrated}{{7.5}{156}{Field redefinitions on the LGB}{theorem.7.5}{}}
\citation{MyThesis}
\citation{My1stpaper}
\newlabel{prop:YMStaysYM}{{7.6}{157}{Field redefined Yang-Mills connection a Yang-Mills connection}{theorem.7.6}{}}
\newlabel{rem:FieldRedefIntegrated}{{7.7}{157}{Meaning of Field redefinitions}{theorem.7.7}{}}
\BKM@entry{id=39,dest={73756273656374696F6E2E372E33},srcline={9200}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C30303073}
\citation{MyThesis}
\citation{My1stpaper}
\citation{MyThesis}
\citation{My1stpaper}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Examples}{158}{subsection.7.3}\protected@file@percent }
\newlabel{CYMExamples}{{7.3}{158}{Examples}{subsection.7.3}{}}
\newlabel{thm:FieldRedefStuff}{{7.8}{158}{Invariance w.r.t.\ field redefinitions, \newline \cite [\S 4, Def.\ 4.5.1 and 4.7.10, Thm.\ 4.7.13]{MyThesis}, \cite [\S 3, Thm.\ 3.6]{My1stpaper}}{theorem.7.8}{}}
\citation{MyThesis}
\citation{MyThesis}
\citation{My1stpaper}
\newlabel{rem:FieldRedefIntegrated}{{7.9}{159}{Field redefinitions integrated}{theorem.7.9}{}}
\citation{My1stpaper}
\citation{My1stpaper}
\citation{MyThesis}
\newlabel{ex:ClassicalYMTheoriesRecovered}{{7.10}{160}{Classical examples}{theorem.7.10}{}}
\citation{My1stpaper}
\citation{MyThesis}
\citation{mackenzieGeneralTheory}
\newlabel{con:TrivialLGBIsPreclassical}{{7.11}{161}{Trivial LGBs are associated with pre-classical theories}{theorem.7.11}{}}
\newlabel{ex:HopfEx}{{7.12}{161}{Hopf fibration $\mathds {S}^7 \to \mathds {S}^4$ giving rise to a curved Yang-Mills gauge theory}{theorem.7.12}{}}
\BKM@entry{id=40,dest={73656374696F6E2E38},srcline={9333}}{5C3337365C3337375C303030465C303030755C303030745C303030755C303030725C303030655C3030305C3034305C303030705C303030725C3030306F5C303030735C303030705C303030655C303030635C303030745C30303073}
\citation{LAURENTGENGOUXStienonXuMultiplicativeForms}
\citation{OtherPreprintAboutConnection}
\citation{FernandesMarcutMultiplicativeForms}
\citation{GroupoidBasedPrincipalBundles}
\@writefile{toc}{\contentsline {section}{\numberline {8}Future prospects}{162}{section.8}\protected@file@percent }
\newlabel{conclusions}{{8}{162}{Future prospects}{section.8}{}}
\citation{MyThesis}
\bibdata{Literatur}
\BKM@entry{id=41,dest={73656374696F6E2A2E33},srcline={1}}{5C3337365C3337375C3030304C5C303030695C303030735C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073}
\bibcite{CurvedYMH}{1}
\bibcite{DaSilva}{2}
\bibcite{OriginofCYMH}{3}
\bibcite{mayer2009lie}{4}
\bibcite{My1stpaper}{5}
\@writefile{toc}{\contentsline {section}{\nonumberline List of References}{163}{section*.3}\protected@file@percent }
\bibcite{MyThesis}{6}
\bibcite{mackenzieGeneralTheory}{7}
\bibcite{GroupoidBasedPrincipalBundles}{8}
\bibcite{LAURENTGENGOUXStienonXuMultiplicativeForms}{9}
\bibcite{FernandesMarcutMultiplicativeForms}{10}
\bibcite{crainic2015multiplicative}{11}
\bibcite{crainic2003differentiable}{12}
\bibcite{Hamilton}{13}
\bibcite{PullbackLGBLAB}{14}
\bibcite{OtherPreprintAboutConnection}{15}
\bibcite{EichtrafoKruemmungUrspruenglich}{16}
\bibcite{mayerlieAuchEichtrafoStuff}{17}
\bibcite{bursztyn2004integration}{18}
\bibcite{Highervectorbundles}{19}
\bibcite{meinrenkensplitting}{20}
\bibstyle{unsrt}
\BKM@entry{id=42,dest={617070656E6469782E41},srcline={9401}}{5C3337365C3337375C303030445C3030306F5C303030755C303030625C3030306C5C303030655C3030305C3034305C303030745C303030615C3030306E5C303030675C303030655C3030306E5C303030745C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030695C303030745C303030735C3030305C3034305C303030635C303030615C3030306E5C3030306F5C3030306E5C303030695C303030635C303030615C3030306C5C3030305C3034305C303030665C3030306C5C303030695C303030705C3030305C3034305C3030306D5C303030615C30303070}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {A}Double tangent bundle and its canonical flip map}{165}{appendix.A}\protected@file@percent }
\newlabel{DoubleTangentFlip}{{A}{165}{Double tangent bundle and its canonical flip map}{appendix.A}{}}
\citation{Highervectorbundles}
\citation{mackenzieGeneralTheory}
\newlabel{DoubleTangentAsDiagram}{{A.1}{166}{Double tangent bundle and its canonical flip map}{equation.A.1}{}}
\citation{mackenzieGeneralTheory}
\newlabel{definitionOfFlipMap}{{A.2}{167}{Double tangent bundle and its canonical flip map}{equation.A.2}{}}
\newlabel{CoordinateExpressionOfTTM}{{A.3}{167}{Double tangent bundle and its canonical flip map}{equation.A.3}{}}
\citation{mackenzieGeneralTheory}
\newlabel{CoordinateExprOfFlippy}{{A.4}{168}{Double tangent bundle and its canonical flip map}{equation.A.4}{}}
\newlabel{LinearStructureOfProlongInCoordinates}{{A.5}{168}{Double tangent bundle and its canonical flip map}{equation.A.5}{}}
\newlabel{rem:CanonicalInvolutionAnIsom}{{A.1}{169}{The canonical involution/flip map an isomorphism, \newline \cite [\S 9.6, Thm.\ 9.6.1, page 363; but without proof]{mackenzieGeneralTheory}}{theorem.A.1}{}}
\newlabel{rem:SchwarzThmInDiffGeo}{{A.2}{169}{Revisit: Schwarz's Theorem}{theorem.A.2}{}}
\citation{mackenzieGeneralTheory}
\newlabel{rem:TotalDerivativesAreLinearWithRTOtherLinearStructure}{{A.3}{170}{Total derivatives of tangent bundle morphisms linear with respect to prolonged vertical structure}{theorem.A.3}{}}
\citation{meinrenkensplitting}
\newlabel{rem:BothLinearStructuresTheSameOnTheVerticalBundle}{{A.4}{171}{Alignment of both vector bundle structures on $\mathrm {TT}M$ on the restricted vertical bundle}{theorem.A.4}{}}
\newlabel{rem:TangentLifts}{{A.5}{172}{Tangent lift, \cite [\S 2.2, last parapgraph in Subsection 2.2]{meinrenkensplitting}}{theorem.A.5}{}}
\newlabel{TotalDerivativeOfTMWithLeibniz}{{A.6}{172}{Tangent lift, \cite [\S 2.2, last parapgraph in Subsection 2.2]{meinrenkensplitting}}{equation.A.6}{}}
\global\csname @altsecnumformattrue\endcsname
\global\@namedef{scr@dte@section@lastmaxnumwidth}{16.1933pt}
\global\@namedef{scr@dte@subsection@lastmaxnumwidth}{21.4132pt}
\global\@namedef{scr@dte@subsubsection@lastmaxnumwidth}{29.92982pt}
\@writefile{toc}{\providecommand\tocbasic@end@toc@file{}\tocbasic@end@toc@file}
\gdef \@abspage@last{175}