-
Notifications
You must be signed in to change notification settings - Fork 2
/
figures.R
491 lines (397 loc) · 19.3 KB
/
figures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#Figures for manuscript
source("libs_and_funcs.R")
lakes <- read_csv("data/lakes_summary_partition.csv")
model_performance <- read_csv("data/lake_model_performance.csv")
#Table 1
#Lake summary statistics
table_1 <- lakes |>
mutate(area_ha = area*10^-4) |> #area from m2 to ha
dplyr::select(area_ha, elev, mean_depth, max_depth) |>
gather(variable, value) |>
group_by(variable) |>
summarise(min = min(value),
q25 = quantile(value, 0.25),
median = median(value),
mean = mean(value),
q75 = quantile(value, 0.75),
max = max(value)) |>
mutate_if(is.numeric, ~round(.x, digits=1))
write_csv(table_1, "figures/table_1.csv")
#Figure 1
#Elevation map of Denmark and lakes
dem_coarse <- getData(name = "alt", path = "data/", country="DNK")
dem_course_crop <- trim(crop(dem_coarse, extent(c(8, 14, 54.5, 57.8))))
dem_utm <- projectRaster(dem_course_crop, crs = dk_epsg, method="bilinear")
#Fix min/max dem vals to match 10m resolution raster
dem_utm[which.max(dem_utm[])] <- 171.8
dem_utm[which.min(dem_utm[])] <- -18.4
dem_df <- as.data.frame(dem_utm, xy=TRUE)
dk_iceage <- st_read("data/dk_iceage.sqlite")
dk_border <- st_read("data/dk_border.sqlite")
dk_iceage_cut <- dk_iceage |>
st_cast("LINESTRING") |>
st_intersection(dk_border) |>
st_collection_extract("LINESTRING")
lakes_sf <- lakes |>
st_as_sf(crs=dk_epsg, coords=c("x", "y"))
figure_1 <- ggplot()+
geom_raster(data=dem_df, aes(x, y, fill=DNK_msk_alt))+
scale_fill_continuous_sequential(palette="Terrain 2", rev=FALSE, na.value = NA, name="Elevation (m)")+
geom_sf(data = dk_iceage_cut, linetype=2, col = "black", show.legend = FALSE)+
geom_sf(data=lakes_sf, col="black", shape=1)+
xlab("Longitude")+
ylab("Latitude")+
theme(legend.position = "bottom")+
guides(fill = guide_colorbar(ticks = FALSE, title.position = "top", title.hjust = 0.5, barwidth = unit(60, "mm")))
figure_1
ggsave("figures/figure_1.png", figure_1, width = 84, height = 110, units = "mm")
ggsave("figures/figure_1.tiff", figure_1, width = 84, height = 110, units = "mm", compression = "lzw")
#Figure 2
#Overview of DEM clipout method and an example observed/predicted lake bathymetry
dem_path <- paste0(data_path, "dtm_10m.tif")
dem <- raster(dem_path)
lake <- 22 #Borre Sø
lake_mask <- raster(paste0("data/buffer_33_percent/lakes_mask/lake_", lake, ".tif"))
lake_mask_vect <- st_as_sf(rasterToPolygons(lake_mask, fun=function(x){x==1}, dissolve = TRUE))
lake_33 <- raster(paste0("data/buffer_33_percent/lakes_dem/lake_", lake, ".tif"))
lake_66 <- raster(paste0("data/buffer_66_percent/lakes_dem/lake_", lake, ".tif"))
lake_100 <- raster(paste0("data/buffer_100_percent/lakes_dem/lake_", lake, ".tif"))
lake_33_bbox <- st_as_sf(st_as_sfc(st_bbox(lake_33)))
lake_66_bbox <- st_as_sf(st_as_sfc(st_bbox(lake_66)))
lake_100_bbox <- st_as_sf(st_as_sfc(st_bbox(lake_100)))
lake_100_bbox_buffer <- st_buffer(lake_100_bbox, 1000)
dem_crop <- crop(dem, extent(lake_100_bbox_buffer))
dem_df <- as.data.frame(dem_crop, xy=TRUE)
lake_surface <- mean(unlist(raster::extract(dem, as(lake_mask_vect, "Spatial"))))
input <- lake_33
input[lake_mask == 1] <- NA
input_df <- as.data.frame(input, xy=TRUE)
observed <- lake_surface - lake_33
observed[lake_mask == 0] <- NA
observed_df <- as.data.frame(observed, xy=TRUE)
predicted_100 <- raster(paste0("data/buffer_100_percent/lakes_pred/lake_", lake, ".tif"))
predicted <- crop(predicted_100, lake_33)
predicted[lake_mask == 0] <- NA
predicted <- lake_surface - predicted
predicted_df <- as.data.frame(predicted, xy=TRUE)
predicted_df$difference <- observed_df$lake_22 - predicted_df$lake_22
lake_depth_min <- 0
lake_depth_max <- max(c(predicted_df$lake_22, observed_df$lake_22), na.rm = TRUE)
#Overview and buffer
fig_2_a <- ggplot()+
geom_raster(data=dem_df, aes(x, y, fill=dtm_10m), show.legend = TRUE)+
geom_sf(data=lake_mask_vect, fill="dodgerblue", col=NA)+
geom_sf(data=lake_33_bbox, fill=NA, alpha=0, aes(linetype="33%"), col="black")+
geom_sf(data=lake_66_bbox, fill=NA, alpha=0, aes(linetype="66%"), col="black")+
geom_sf(data=lake_100_bbox, fill=NA, alpha=0, aes(linetype="100%"), col="black")+
scale_linetype_manual(values=c("33%" = 3, "66%" = 2, "100%" = 1), name = "Buffer",
guide=guide_legend(override.aes = list(fill = NA), order=2),
breaks = c("33%", "66%", "100%"))+
scale_fill_continuous_sequential(palette="Terrain 2", rev=FALSE, na.value = NA,
name="Elevation (m)", limits=c(19, 153),
guide=guide_colorbar(order=1))+
annotation_scale(location="br")+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
#Model input
fig_2_b <- ggplot()+
geom_raster(data=input_df, aes(x, y, fill=lake_22), show.legend = FALSE)+
scale_fill_continuous_sequential(palette="Terrain 2", rev=FALSE, na.value = NA, limits=c(19, 153))+
geom_sf(data=lake_mask_vect, col="black", fill=NA)+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
#Ground truth
fig_2_c <- ggplot()+
geom_raster(data=observed_df, aes(x, y, fill=lake_22), show.legend = TRUE)+
scale_fill_continuous_sequential(palette="BuPu", rev=FALSE, na.value = NA,
name="Lake depth (m)", trans="reverse", limits=c(lake_depth_max, 0))+
geom_sf(data=lake_mask_vect, col="black", fill=NA)+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
#Predicted
fig_2_d <- ggplot()+
geom_raster(data=predicted_df, aes(x, y, fill=lake_22), show.legend = TRUE)+
scale_fill_continuous_sequential(palette="BuPu", rev=FALSE, na.value = NA,
name="Lake depth (m)", trans="reverse", limits=c(lake_depth_max, 0))+
geom_sf(data=lake_mask_vect, col="black", fill=NA)+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
#Difference
fig_2_e <- ggplot()+
geom_raster(data=predicted_df, aes(x, y, fill=difference), show.legend = TRUE)+
scale_fill_continuous_diverging(palette="Blue-Red", rev=FALSE, na.value = NA, name="Difference (m)")+
geom_sf(data=lake_mask_vect, col="black", fill=NA)+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
figure_2 <- fig_2_a / (fig_2_b + fig_2_c) / (fig_2_d + fig_2_e) + plot_annotation(tag_levels = "a")+plot_layout(guides="collect", heights = c(1, 0.5, 0.5))
figure_2
ggsave("figures/figure_2.png", figure_2, width = 130, height = 200, units = "mm")
ggsave("figures/figure_2.tiff", figure_2, width = 130, height = 200, units = "mm", compression = "lzw")
ggsave("figures/figure_2.pdf", figure_2, width = 130, height = 200, units = "mm")
#Figure 3
#Performance of baseline and unets models
baseline <- read_csv("data/baseline_performance.csv")
baseline_models <- baseline |>
group_by(buffer, mode) |>
summarise(all = mean(mae), valid = mean(mae[partition == "valid"])) |>
gather(partition, mae, valid, all) |>
mutate(model_label = case_when(mode == "ns" ~ "Navier-Stokes",
mode == "telea" ~ "Telea",
mode == "linear" ~ "Linear",
mode == "cubic" ~ "Cubic"),
model = paste0("Baseline[", model_label,"]"))
#Unet models
lake_loss <- read_csv("data/lake_model_loss.csv")
lake_loss_original <- lake_loss |>
group_by(metric, buffer, weights, init_features) |>
mutate(epoch = 1:n(),
complexity = case_when(init_features == 4 ~ "0.121",
init_features == 8 ~ "0.485",
init_features == 16 ~ "1.9",
init_features == 32 ~ "7.8")) |>
ungroup() |>
filter(metric == "val_loss_original_scale")
lake_best_models <- lake_loss_original |>
group_by(buffer, weights, init_features) |>
summarise(best_epoc = epoch[which.min(value)], partition = "valid", mae = min(value)) |>
ungroup() |>
mutate(weights_label = ifelse(weights == "dem", "DEM", "Random"),
model = paste0("'U-net'['", init_features, "-", weights_label,"']"))
fig_data <- bind_rows(lake_best_models, baseline_models) |>
mutate(model = factor(model),
buffer_label = factor(paste0(buffer, "%"), levels = c("33%", "66%", "100%")),
Data = ifelse(partition == "all", "All", "Validation"))
figure_3 <- fig_data |>
ggplot(aes(reorder(model, -mae), mae, fill=Data))+
geom_col(position = position_dodge(), col="black")+
geom_hline(yintercept = min(lake_best_models$mae), linetype=2)+
scale_x_discrete(labels = function(l) parse(text=l))+
facet_grid(.~buffer_label)+
coord_flip()+
ylab("Mean absolute error (m)")+
xlab("Model")+
scale_fill_manual(values = c("All" = "grey", "Validation" = "white"))+
theme(strip.background = element_blank(), axis.text.y = element_text(hjust=0))
figure_3
ggsave("figures/figure_3.png", figure_3, width = 174, height = 100, units = "mm")
ggsave("figures/figure_3.tiff", figure_3, width = 174, height = 100, units = "mm", compression = "lzw")
#Figure 4
#Histograms with performance metrics for best model and obs vs pred avg elevation (2x2 plot) for all lakes and test set only
model_performance_test <- model_performance |>
filter(partition == "test")
fig_4_a <- model_performance_test |>
ggplot(aes(mae))+
geom_histogram(position = "identity", col="black", fill="white")+
xlab("Mean absolute error (m)")+
ylab("Count")+
scale_y_continuous(expand = expansion(mult = c(0, 0.05)))+
scale_x_continuous(expand = expansion(mult = c(0.05, 0.05)), breaks = seq(0, 10, 2))
fig_4_b <- model_performance_test |>
ggplot(aes(rmse))+
geom_histogram(position = "identity", col="black", fill="white")+
xlab("Root mean squared error (m)")+
ylab("Count")+
scale_y_continuous(expand = expansion(mult = c(0, 0.05)))+
scale_x_continuous(expand = expansion(mult = c(0.05, 0.05)), breaks = seq(0, 10, 2))
fig_4_c <- model_performance_test |>
ggplot(aes(corr))+
geom_histogram(position = "identity", col="black", fill="white")+
xlab("Pearson correlation coefficient")+
ylab("Count")+
scale_y_continuous(expand = expansion(mult = c(0, 0.05)))+
scale_x_continuous(expand = expansion(mult = c(0.05, 0.05)), breaks = seq(-0.2, 1, 0.2))
fig_4_d <- model_performance_test |>
ggplot(aes(obs_mean, pred_mean))+
geom_abline(intercept = 0, slope = 1, linetype=3)+
geom_point(shape=21, fill="white")+
ylim(-6, 80)+
xlim(-6, 80)+
xlab("Observed mean elevation (m)")+
ylab("Predicted mean elevation (m)")
figure_4 <- fig_4_a + fig_4_b + fig_4_c + fig_4_d + plot_annotation(tag_levels = "a")+plot_layout(guides="collect")
figure_4
ggsave("figures/figure_4.png", figure_4, width = 174, height = 160, units = "mm")
ggsave("figures/figure_4.tiff", figure_4, width = 174, height = 160, units = "mm", compression = "lzw")
#Figure 5
#Example of prediction with ground truth, best baseline and best deep learning model
#Create legend separately for figure 5
png("figures/figure_5/legend.png", width = 45, height = 150, units="mm", res=300)
figure_5_legend()
dev.off()
legend <- readPNG("figures/figure_5/legend.png")
#Look into jagged edges in 3D plots
bathy_3d_compare(6, subfolder = "figure_5")
bathy_3d_compare(58, subfolder = "figure_5")
bathy_3d_compare(78, subfolder = "figure_5")
#Create rows and assemble figure
row_1 <- image_row(6, subfolder = "figure_5")
row_2 <- image_row(58, subfolder = "figure_5")
row_3 <- image_row(78, subfolder = "figure_5")
figure_5 <- (wrap_plots(row_1, nrow=1)+plot_spacer())/
(wrap_plots(row_2, nrow=1)+plot_spacer())/
(wrap_plots(row_3, nrow=1)+plot_spacer())/
plot_annotation(tag_levels = "a")+
inset_element(rasterGrob(legend), 0.8, 0.25, 1, 3, ignore_tag = TRUE)
figure_5
ggsave("figures/figure_5.png", figure_5, width = 174, height = 120, units = "mm")
ggsave("figures/figure_5.tiff", figure_5, width = 174, height = 120, units = "mm", compression = "lzw")
#Supplementary material
#Figure S1
array_paths <- list.files("figures/figure_s1/", full.names = TRUE, pattern = "*.npy")
array_list <- lapply(array_paths, \(x){npyLoad(x) |> melt()})
names(array_list) <- gsub("*.npy", "", basename(array_paths))
#a) 256x256 DEM observed, b) DEM with hole, c) DEM predicted, d) difference between obs and pred for mask
fig_s1_a <- ggplot()+
geom_raster(data=array_list$target_0, aes(Var1, Var2, fill=value), show.legend = TRUE)+
scale_fill_continuous_sequential(palette="Terrain 2", rev=FALSE, na.value = NA, name="Elevation (m)", limits=c(-20, 120))+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
array_list$target_0$hole <- array_list$target_0$value
array_list$target_0$hole[array_list$mask_0$value == 1] <- NA
fig_s1_b <- ggplot()+
geom_raster(data=array_list$target_0, aes(Var1, Var2, fill=hole), show.legend = TRUE)+
scale_fill_continuous_sequential(palette="Terrain 2", rev=FALSE, na.value = NA, name="Elevation (m)", limits=c(-20, 120))+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
fig_s1_c <- ggplot()+
geom_raster(data=array_list$predicted_0, aes(Var1, Var2, fill=value), show.legend = TRUE)+
scale_fill_continuous_sequential(palette="Terrain 2", rev=FALSE, na.value = NA, name="Elevation (m)", limits=c(-20, 120))+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
array_list$target_0$difference <- (array_list$target_0$value - array_list$predicted_0$value)
array_list$target_0$difference[array_list$mask_0$value == 0] <- NA
fig_s1_d <- ggplot()+
geom_raster(data=array_list$target_0, aes(Var1, Var2, fill=difference), show.legend = TRUE)+
scale_fill_continuous_diverging(palette="Blue-Red", rev=FALSE, na.value = NA, name="Difference (m)")+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
theme_void()+
theme(panel.border = element_rect(colour = "black", fill=NA))
figure_s1 <- fig_s1_a + fig_s1_b + fig_s1_c + fig_s1_d + plot_annotation(tag_levels = "a")+plot_layout(guides="collect", nrow = 2)
figure_s1
ggsave("figures/figure_s1.png", figure_s1, width = 174, height = 140, units = "mm")
#Figure S2
#Validation loss during training of DEM models
dem_loss <- read_csv("data/dem_model_loss.csv")
dem_loss_original <- dem_loss |>
group_by(metric, init_features) |>
mutate(epoch = 1:n(),
Model = factor(paste0("'U-net'[", init_features,"]"))) |>
ungroup() |>
filter(metric == "val_loss_original_scale")
fig_s2 <- dem_loss_original |>
ggplot(aes(epoch, value, col=Model))+
geom_line()+
scale_color_viridis_d(direction = -1, labels = function(l) parse(text=l))+
ylab("Mean absolute error (m)")+
xlab("Epoch")+
theme(legend.position = c(0.8, 0.8))+
coord_cartesian(ylim=c(2, 10))+
theme(legend.text.align = 0)
fig_s2
ggsave("figures/figure_s2.png", fig_s2, width = 129, height = 100, units = "mm")
#Figure S3
#Validation loss during training of LAKE models
fig_s3 <- lake_loss_original |>
mutate(buffer_label = factor(paste0(buffer, "%"), levels = c("33%", "66%", "100%")),
weights_label = factor(ifelse(weights == "dem", "DEM", "Random"), levels=c("Random", "DEM")),
value = ifelse(value > 15, NA, value),
Model = factor(paste0("'U-net'[", init_features,"]"), levels=c("'U-net'[4]", "'U-net'[8]", "'U-net'[16]", "'U-net'[32]"))) |>
na.omit() |>
ggplot(aes(epoch, value, col=Model))+
geom_line()+
scale_color_viridis_d(direction = -1, labels = function(l) parse(text=l))+
ylab("Mean absolute error (m)")+
xlab("Epoch")+
geom_hline(yintercept = min(lake_best_models$mae), linetype=2)+
facet_grid(weights_label~buffer_label, scales="free_y")+
theme(strip.background = element_blank(), legend.text.align = 0)
fig_s3
ggsave("figures/figure_s3.png", fig_s3, width = 174, height = 120, units = "mm")
#Figure S4
#Example of poor model performance (two highest test MAE)
bathy_3d_compare(57, subfolder = "figure_s4")
bathy_3d_compare(45, subfolder = "figure_s4")
#Create rows and assemble figure
row_1 <- image_row(57, subfolder = "figure_s4")
row_2 <- image_row(45, subfolder = "figure_s4")
figure_s4 <- (wrap_plots(row_1, nrow=1)+plot_spacer())/
(wrap_plots(row_2, nrow=1)+plot_spacer())+
plot_annotation(tag_levels = "a")+
inset_element(rasterGrob(legend), 0.8, 0.2, 1, 2, ignore_tag = TRUE)
figure_s4
ggsave("figures/figure_s4.png", figure_s4, width = 174, height = 80, units = "mm")
#Figure S5
#Pixel wise observed vs predicted plot for lakes in the test set
lake_test_list <- lapply(lakes[lakes$partition == "test", ]$lake_id, function(lake){
buffer_dir <- "data/buffer_100_percent/"
lake_obs <- raster(paste0(buffer_dir, "lakes_dem/lake_", lake, ".tif"))
lake_pred <- raster(paste0(buffer_dir, "lakes_pred/lake_", lake, ".tif"))
lake_mask <- raster(paste0(buffer_dir, "lakes_mask/lake_", lake, ".tif"))
lake_df <- data.frame(lake_id = lake,
obs = lake_obs[lake_mask == 1],
pred = lake_pred[lake_mask == 1])
return(lake_df)
})
lake_test_df <- do.call(rbind, lake_test_list)
#Determine convex hull surrounding all points of each lake
convex_hull <- lake_test_df %>%
group_by(lake_id) %>%
slice(chull(obs, pred))
figure_s5 <- lake_test_df |>
ggplot(aes(obs, pred)) +
stat_density2d(aes(fill = ..density..^0.25), geom = "tile", contour = FALSE, n = 200, show.legend = FALSE) +
scale_fill_gradientn(colours = c("white", blues9))+
geom_abline(slope=1, intercept=0, linetype=3)+
scale_x_continuous(expand = c(0,0))+
scale_y_continuous(expand = c(0,0))+
coord_equal()+
geom_polygon(data = convex_hull, aes(group=lake_id), col="black", fill=NA, linewidth=0.1)+
xlab("Observed elevation (m)")+
ylab("Predicted elevation (m)")
ggsave("figures/figure_s5.png", figure_s5, width = 129, height = 129, units = "mm")
#Figure S6
#Predict versus observed zmax and zmean
obs_pred_data <- model_performance |>
left_join(lakes) |>
mutate(Partition = factor(str_to_title(partition), levels = c("Train", "Valid", "Test")))
#MAE scores
mean(abs(obs_pred_data$pred_zmean - obs_pred_data$mean_depth))
mean(abs(obs_pred_data$pred_zmax - obs_pred_data$max_depth))
fig_s6_a <- obs_pred_data |>
ggplot(aes(mean_depth, pred_zmean, col = Partition))+
geom_abline(intercept = 0, slope = 1, linetype=3)+
geom_point()+
scale_color_viridis_d(direction = -1)+
ylim(-0.05, 20)+
xlim(-0.05, 20)+
xlab("Observed mean depth (m)")+
ylab("Predicted maen depth (m)")
fig_s6_b <- obs_pred_data |>
ggplot(aes(max_depth, pred_zmax, col = Partition))+
geom_abline(intercept = 0, slope = 1, linetype=3)+
geom_point()+
scale_color_viridis_d(direction = -1)+
ylim(0, 40)+
xlim(0, 40)+
xlab("Observed maximum depth (m)")+
ylab("Predicted maximum depth (m)")
figure_s6 <- fig_s6_a + fig_s6_b + plot_annotation(tag_levels = "a")+plot_layout(guides="collect", nrow=2)
figure_s6
ggsave("figures/figure_s6.png", figure_s6, width = 129, height = 180, units = "mm")