-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
90 lines (77 loc) · 3.55 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#Create Unet autoencoder
#https://github.com/mateuszbuda/brain-segmentation-pytorch
from collections import OrderedDict
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, mask_channels=1, init_features=8):
super(UNet, self).__init__()
self.final_act = nn.Hardtanh()
features = init_features
self.encoder1 = UNet._block(in_channels + mask_channels, features, name="enc1")
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder2 = UNet._block(features, features * 2, name="enc2")
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder3 = UNet._block(features * 2, features * 4, name="enc3")
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder4 = UNet._block(features * 4, features * 8, name="enc4")
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.bottleneck = UNet._block(features * 8, features * 16, name="bottleneck")
self.upconv4 = nn.ConvTranspose2d(features * 16, features * 8, kernel_size=2, stride=2)
self.decoder4 = UNet._block((features * 8) * 2, features * 8, name="dec4")
self.upconv3 = nn.ConvTranspose2d(features * 8, features * 4, kernel_size=2, stride=2)
self.decoder3 = UNet._block((features * 4) * 2, features * 4, name="dec3")
self.upconv2 = nn.ConvTranspose2d(features * 4, features * 2, kernel_size=2, stride=2)
self.decoder2 = UNet._block((features * 2) * 2, features * 2, name="dec2")
self.upconv1 = nn.ConvTranspose2d(features * 2, features, kernel_size=2, stride=2)
self.decoder1 = UNet._block(features * 2, features, name="dec1")
self.conv = nn.Conv2d(in_channels=features, out_channels=out_channels, kernel_size=1)
def forward(self, x_in, x_mask):
x = x_in + x_mask
x = torch.cat((x, x_mask), dim=1)
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
enc4 = self.encoder4(self.pool3(enc3))
bottleneck = self.bottleneck(self.pool4(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((dec4, enc4), dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((dec3, enc3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((dec2, enc2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((dec1, enc1), dim=1)
dec1 = self.decoder1(dec1)
return self.final_act(self.conv(dec1))
@staticmethod
def _block(in_channels, features, name):
return nn.Sequential(
OrderedDict(
[
(
name + "conv1",
nn.Conv2d(
in_channels=in_channels,
out_channels=features,
kernel_size=3,
padding=1
),
),
(name + "act1", nn.LeakyReLU()),
(
name + "conv2",
nn.Conv2d(
in_channels=features,
out_channels=features,
kernel_size=3,
padding=1
),
),
(name + "act2", nn.LeakyReLU()),
]
)
)