forked from ckolivas/cgminer
-
Notifications
You must be signed in to change notification settings - Fork 7
/
knc-asic.c
437 lines (399 loc) · 13 KB
/
knc-asic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
* library for KnCminer devices
*
* Copyright 2014 KnCminer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <zlib.h>
#include "miner.h"
#include "logging.h"
#include "knc-asic.h"
/* ASIC Command structure
* command 8 bits
* chip 8 bits
* core 16 bits
* data [command dependent]
* CRC32 32 bits (Neptune)
*
* ASIC response starts immediately after core address bits.
*
* response data
* CRC32 32 bits (Neptune)
* STATUS 8 bits 1 0 ~CRC_OK 0 0 ACCEPTED_WORK 0 1 (Neptune)
*
* Requests
*
* SETWORK (Jupiter)
* midstate 256 bits
* data 96 bits
*
* SETWORK/SETWORK_CLEAN (Neptune)
* slot | 0xf0 8 bits
* precalc_midstate 192 bits
* precalc_data 96 bits
* midstate 256 bits
*
* Returns REPORT response on Neptune
*
* Responses
*
* GETINFO
*
* (core field unused)
*
* cores 16 bits
* version 16 bits
* reserved 60 bits (Neptune)
* die_status 4 bits (Neptune)
* 1' pll_locked
* 1' hash_reset_n 1 if cores have been reset since last report
* 1' pll_reset_n 1 if PLL have been reset since last report
* 1' pll_power_down
* core_status cores * 2 bits (Neptune) rounded up to bytes
* 1' want_work
* 1' has_report (unreliable)
*
* REPORT
*
* reserved 2 bits
* next_state 1 bit next work state loaded
* state 1 bit hashing (0 on Jupiter)
* next_slot 4 bit slot id of next work state (0 on Jupiter)
* progress 8 bits upper 8 bits of nonce counter
* active_slot 4 bits slot id of current work state
* nonce_slot 4 bits slot id of found nonce
* nonce 32 bits
*
* reserved 4 bits
* nonce_slot 4 bits
* nonce 32 bits
*
* repeat for 5 nonce entries in total on Neptune
* Jupiter only has first nonce entry
*/
// Precalculate first 3 rounds of SHA256 - as much as possible
// Macro routines copied from sha2.c
static void knc_prepare_neptune_work(unsigned char *out, struct work *work) {
const uint8_t *midstate = work->midstate;
const uint8_t *data = work->data + 16*4;
#ifndef GET_ULONG_BE
#define GET_ULONG_BE(b,i) \
(( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ))
#endif
#ifndef GET_ULONG_LE
#define GET_ULONG_LE(b,i) \
(( (uint32_t) (b)[(i) + 3] << 24 ) \
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
| ( (uint32_t) (b)[(i) + 0] ))
#endif
#ifndef PUT_ULONG_BE
#define PUT_ULONG_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
#ifndef PUT_ULONG_LE
#define PUT_ULONG_LE(n,b,i) \
{ \
(b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 0] = (unsigned char) ( (n) ); \
}
#endif
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))
#define R(t) \
( \
W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
{ \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
uint32_t temp1, temp2, W[16+3];
uint32_t A, B, C, D, E, F, G, H;
W[0] = GET_ULONG_LE(data, 0*4 );
W[1] = GET_ULONG_LE(data, 1*4 );
W[2] = GET_ULONG_LE(data, 2*4 );
W[3] = 0; // since S0(0)==0, this must be 0. S0(nonce) is added in hardware.
W[4] = 0x80000000;
W[5] = 0;
W[6] = 0;
W[7] = 0;
W[8] = 0;
W[9] = 0;
W[10] = 0;
W[11] = 0;
W[12] = 0;
W[13] = 0;
W[14] = 0;
W[15] = 0x00000280;
R(16); // Expand W 14, 9, 1, 0
R(17); // 15, 10, 2, 1
R(18); // 16, 11, 3, 2
A = GET_ULONG_LE(midstate, 0*4 );
B = GET_ULONG_LE(midstate, 1*4 );
C = GET_ULONG_LE(midstate, 2*4 );
D = GET_ULONG_LE(midstate, 3*4 );
E = GET_ULONG_LE(midstate, 4*4 );
F = GET_ULONG_LE(midstate, 5*4 );
G = GET_ULONG_LE(midstate, 6*4 );
H = GET_ULONG_LE(midstate, 7*4 );
uint32_t D_ = D, H_ = H;
P( A, B, C, D_, E, F, G, H_, W[ 0], 0x428A2F98 );
uint32_t C_ = C, G_ = G;
P( H_, A, B, C_, D_, E, F, G_, W[ 1], 0x71374491 );
uint32_t B_ = B, F_ = F;
P( G_, H_, A, B_, C_, D_, E, F_, W[ 2], 0xB5C0FBCF );
PUT_ULONG_BE( D_, out, 0*4 );
PUT_ULONG_BE( C_, out, 1*4 );
PUT_ULONG_BE( B_, out, 2*4 );
PUT_ULONG_BE( H_, out, 3*4 );
PUT_ULONG_BE( G_, out, 4*4 );
PUT_ULONG_BE( F_, out, 5*4 );
PUT_ULONG_BE( W[18], out, 6*4 ); // This is partial S0(nonce) added by hardware
PUT_ULONG_BE( W[17], out, 7*4 );
PUT_ULONG_BE( W[16], out, 8*4 );
PUT_ULONG_BE( H, out, 9*4 );
PUT_ULONG_BE( G, out, 10*4 );
PUT_ULONG_BE( F, out, 11*4 );
PUT_ULONG_BE( E, out, 12*4 );
PUT_ULONG_BE( D, out, 13*4 );
PUT_ULONG_BE( C, out, 14*4 );
PUT_ULONG_BE( B, out, 15*4 );
PUT_ULONG_BE( A, out, 16*4 );
}
static void knc_prepare_jupiter_work(unsigned char *out, struct work *work) {
int i;
for (i = 0; i < 8 * 4; i++)
out[i] = work->midstate[8 * 4 - i - 1];
for (i = 0; i < 3 * 4; i++)
out[8 * 4 + i] = work->data[16 * 4 + 3 * 4 - i - 1];
}
static void knc_prepare_core_command(uint8_t *request, int command, int die, int core)
{
request[0] = command;
request[1] = die;
request[2] = core >> 8;
request[3] = core & 0xff;
}
int knc_prepare_report(uint8_t *request, int die, int core)
{
knc_prepare_core_command(request, KNC_ASIC_CMD_REPORT, die, core);
return 4;
}
int knc_prepare_info(uint8_t *request, int die, struct knc_die_info *die_info, int *response_size)
{
request[0] = KNC_ASIC_CMD_GETINFO;
request[1] = die;
request[2] = 0;
request[3] = 0;
switch (die_info->version) {
case KNC_VERSION_JUPITER:
*response_size = 4;
break;
default:
*response_size = 12 + (KNC_MAX_CORES_PER_DIE*2 + 7) / 8;
break;
case KNC_VERSION_NEPTUNE:
*response_size = 12 + (die_info->cores*2 + 7) / 8;
break;
}
return 4;
}
int knc_prepare_neptune_setwork(uint8_t *request, int die, int core, int slot, struct work *work, int clean)
{
if (!clean)
knc_prepare_core_command(request, KNC_ASIC_CMD_SETWORK, die, core);
else
knc_prepare_core_command(request, KNC_ASIC_CMD_SETWORK_CLEAN, die, core);
request[4] = slot | 0xf0;
if (work)
knc_prepare_neptune_work(request + 4 + 1, work);
else
memset(request + 4 + 1, 0, 6*4 + 3*4 + 8*4);
return 4 + 1 + 6*4 + 3*4 + 8*4;
}
int knc_prepare_jupiter_setwork(uint8_t *request, int die, int core, int slot, struct work *work)
{
knc_prepare_core_command(request, KNC_ASIC_CMD_SETWORK, die, core);
request[4] = slot | 0xf0;
if (work)
knc_prepare_jupiter_work(request + 4 + 1, work);
else
memset(request + 4 + 1, 0, 8*4 + 3*4);
return 4 + 1 + 8*4 + 3*4;
}
int knc_prepare_jupiter_halt(uint8_t *request, int die, int core)
{
knc_prepare_core_command(request, KNC_ASIC_CMD_HALT, die, core);
return 4;
}
int knc_prepare_neptune_halt(uint8_t *request, int die, int core)
{
knc_prepare_core_command(request, KNC_ASIC_CMD_HALT, die, core);
request[4] = 0 | 0xf0;
memset(request + 4 + 1, 0, 6*4 + 3*4 + 8*4);
return 4 + 1 + 6*4 + 3*4 + 8*4;
}
void knc_prepare_neptune_message(int request_length, const uint8_t *request, uint8_t *buffer)
{
uint32_t crc;
memcpy(buffer, request, request_length);
buffer += request_length;
crc = crc32(0, Z_NULL, 0);
crc = crc32(crc, request, request_length);
PUT_ULONG_BE(crc, buffer, 0);
}
int knc_check_response(uint8_t *response, int response_length, uint8_t ack)
{
int ret = 0;
if (response_length > 0) {
uint32_t crc, recv_crc;
crc = crc32(0, Z_NULL, 0);
crc = crc32(crc, response, response_length);
recv_crc = GET_ULONG_BE(response, response_length);
if (crc != recv_crc)
ret |= KNC_ERR_CRC;
}
if ((ack & KNC_ASIC_ACK_MASK) != KNC_ASIC_ACK_MATCH)
ret |= KNC_ERR_ACK;
if ((ack & KNC_ASIC_ACK_CRC))
ret |= KNC_ERR_CRCACK;
if ((ack & KNC_ASIC_ACK_ACCEPT))
ret |= KNC_ACCEPTED;
return ret;
}
int knc_decode_info(uint8_t *response, struct knc_die_info *die_info)
{
int cores_in_die = response[0]<<8 | response[1];
int version = response[2]<<8 | response[3];
if (version == KNC_ASIC_VERSION_JUPITER && cores_in_die <= 48) {
die_info->version = KNC_VERSION_JUPITER;
die_info->cores = cores_in_die;
memset(die_info->want_work, -1, cores_in_die);
die_info->pll_power_down = -1;
die_info->pll_reset_n = -1;
die_info->hash_reset_n = -1;
die_info->pll_locked = -1;
return 0;
} else if (version == KNC_ASIC_VERSION_NEPTUNE && cores_in_die <= KNC_MAX_CORES_PER_DIE) {
die_info->version = KNC_VERSION_NEPTUNE;
die_info->cores = cores_in_die;
int core;
for (core = 0; core < cores_in_die; core++)
die_info->want_work[core] = ((response[12 + core/4] >> ((3-(core % 4)) * 2)) >> 1) & 1;
int die_status = response[11] & 0xf;
die_info->pll_power_down = (die_status >> 0) & 1;
die_info->pll_reset_n = (die_status >> 1) & 1;
die_info->hash_reset_n = (die_status >> 2) & 1;
die_info->pll_locked = (die_status >> 3) & 1;
return 0;
} else {
return -1;
}
}
int knc_decode_report(uint8_t *response, struct knc_report *report, int version)
{
/*
* reserved 2 bits
* next_state 1 bit next work state loaded
* state 1 bit hashing (0 on Jupiter)
* next_slot 4 bit slot id of next work state (0 on Jupiter)
* progress 8 bits upper 8 bits of nonce counter
* active_slot 4 bits slot id of current work state
* nonce_slot 4 bits slot id of found nonce
* nonce 32 bits
*
* reserved 4 bits
* nonce_slot 4 bits
* nonce 32 bits
*/
report->next_state = (response[0] >> 5) & 1;
if (version != KNC_VERSION_JUPITER) {
report->state = (response[0] >> 4) & 1;
report->next_slot = response[0] & ((1<<4)-1);
} else {
report->state = -1;
report->next_slot = -1;
}
report->progress = (uint32_t)response[1] << 24;
report->active_slot = (response[2] >> 4) & ((1<<4)-1);
int n;
int n_nonces = version == KNC_VERSION_JUPITER ? 1 : 5;
for (n = 0; n < n_nonces; n++) {
report->nonce[n].slot = response[2+n*5] & ((1<<4)-1);
report->nonce[n].nonce =
(uint32_t)response[3+n*5] << 24 |
(uint32_t)response[4+n*5] << 16 |
(uint32_t)response[5+n*5] << 8 |
(uint32_t)response[6+n*5] << 0 |
0;
}
for (; n < KNC_NONCES_PER_REPORT; n++) {
report->nonce[n].slot = -1;
report->nonce[n].nonce = 0;
}
return 0;
}
int knc_detect_die(void *ctx, int channel, int die, struct knc_die_info *die_info)
{
uint8_t request[4];
int response_len = 2 + 2 + 4 + 4 + (KNC_MAX_CORES_PER_DIE*2 + 7) / 8;
uint8_t response[response_len];
int request_len = knc_prepare_info(request, die, die_info, &response_len);
int status = knc_syncronous_transfer(ctx, channel, request_len, request, response_len, response);
/* Workaround for pre-ASIC version */
int cores_in_die = response[0]<<8 | response[1];
int version = response[2]<<8 | response[3];
if (version == KNC_ASIC_VERSION_NEPTUNE && cores_in_die < KNC_MAX_CORES_PER_DIE) {
applog(LOG_DEBUG, "KnC %d-%d: Looks like a NEPTUNE die with %d cores", channel, die, cores_in_die);
/* Try again with right response size */
response_len = 2 + 2 + 4 + 4 + (cores_in_die*2 + 7) / 8;
status = knc_syncronous_transfer(ctx, channel, request_len, request, response_len, response);
}
int rc = -1;
if (version == KNC_ASIC_VERSION_JUPITER || status == 0)
rc = knc_decode_info(response, die_info);
if (rc == 0)
applog(LOG_INFO, "KnC %d-%d: Found %s die with %d cores", channel, die,
die_info->version == KNC_VERSION_NEPTUNE ? "NEPTUNE" :
die_info->version == KNC_VERSION_JUPITER ? "JUPITER" :
"UNKNOWN",
cores_in_die);
else
applog(LOG_DEBUG, "KnC %d-%d: No KnC chip found", channel, die);
return rc;
}