-
Notifications
You must be signed in to change notification settings - Fork 1
/
lfw.py
executable file
·86 lines (75 loc) · 3.48 KB
/
lfw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""Helper for evaluation on the Labeled Faces in the Wild dataset
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import facenet
def evaluate(embeddings, actual_issame, nrof_folds=10, distance_metric=0, subtract_mean=False):
# Calculate evaluation metrics
thresholds = np.arange(0, 4, 0.01)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2,
np.asarray(actual_issame), nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
thresholds = np.arange(0, 4, 0.001)
val, val_std, far = facenet.calculate_val(thresholds, embeddings1, embeddings2,
np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
return tpr, fpr, accuracy, val, val_std, far
def get_paths(lfw_dir, pairs):
nrof_skipped_pairs = 0
path_list = []
issame_list = []
for pair in pairs:
if len(pair) == 3:
path0 = add_extension(os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1])))
path1 = add_extension(os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[2])))
issame = True
elif len(pair) == 4:
path0 = add_extension(os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1])))
path1 = add_extension(os.path.join(lfw_dir, pair[2], pair[2] + '_' + '%04d' % int(pair[3])))
issame = False
if os.path.exists(path0) and os.path.exists(path1): # Only add the pair if both paths exist
path_list += (path0,path1)
issame_list.append(issame)
else:
nrof_skipped_pairs += 1
if nrof_skipped_pairs>0:
print('Skipped %d image pairs' % nrof_skipped_pairs)
return path_list, issame_list
def add_extension(path):
if os.path.exists(path+'.jpg'):
return path+'.jpg'
elif os.path.exists(path+'.png'):
return path+'.png'
else:
raise RuntimeError('No file "%s" with extension png or jpg.' % path)
def read_pairs(pairs_filename):
pairs = []
with open(pairs_filename, 'r') as f:
for line in f.readlines()[1:]:
pair = line.strip().split()
pairs.append(pair)
return np.array(pairs)