- Added Java API support for Windows.
- Added
tf.spectral
module. Moved existing FFT ops totf.spectral
while keeping an alias in the old location (tf.*
). - Added 1D, 2D and 3D Fourier transform ops for real signals to
tf.spectral
. - Added a
tf.bincount
function. - Added Keras 2 API to contrib.
- Added a new lightweight queue-like object -
RecordInput
. - Added
tf.contrib.image.compose_transforms
function. - Bring
tf.estimator.*
into the API. Non-deprecated functionality fromtf.contrib.learn.Estimator
is moved totf.estimator.Estimator
with cosmetic changes. - Docker images: TF images on gcr.io and Docker Hub are upgraded to ubuntu:16.04.
- Added the following features to TensorFlow Debugger (tfdbg):
- Ability to inspect Python source file against TF ops and tensors (command
print_source
/ps
) - New navigation bar in Curses-based UI
- NodeStepper (command
invoke_stepper
) now uses intermediate tensor dumps. It also usesTensorHandles
as direct feeds during successivecont
calls for improved performance and reduced memory consumption.
- Ability to inspect Python source file against TF ops and tensors (command
- TensorFlow 1.1.0 will be the last time we release a binary with Mac GPU support. Going forward, we will stop testing on Mac GPU systems. We continue to welcome patches that maintain Mac GPU support, and we will try to keep the Mac GPU build working.
- The behavior of RNNCells is now stricter due to the transition towards making RNNCells act more like Keras layers.
- If an RNNCell is used twice in two different variable scopes, an error is raised describing how to avoid this behavior.
- If an RNNCell is used in a variable scope with existing conflicting variables, an error is raised showing that the RNNCell must be constructed with argument
reuse=True
.
- Deprecated contrib/distributions
pmf
,pdf
,log_pmf
,log_pdf
. - Moved
bayesflow.special_math
to distributions. tf.contrib.tensor_forest.python.tensor_forest.RandomForestDeviceAssigner
removed.- Changed some MVN classes and parameters:
tf.contrib.distributions.MultivariateNormalFull
replaced bytf.contrib.distributions.MultivariateNormalTriL
.tf.contrib.distributions.MultivariateNormalCholesky
replaced bytf.contrib.distributions.MultivariateNormalTriL
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev
replaced bytf.contrib.distributions.MultivariateNormalDiagWithSoftplusScale
tf.contrib.distributions.MultivariateNormalDiag
arguments changed frommu
,diag_stddev
tolog
,scale_diag
.tf.contrib.distributions.MultivariateNormalDiagPlusVDVT
removed.tf.contrib.distributions.MultivariateNormalDiagPlusLowRank
added.
- Java: Support for loading models exported using the SavedModel API (courtesy @EronWright).
- Go: Added support for incremental graph execution.
- Fix a bug in the WALS solver when single-threaded.
- Added support for integer sparse feature values in
tf.contrib.layers.sparse_column_with_keys
. - Fixed
tf.set_random_seed(0)
to be deterministic for all ops. - Stability improvements for the GCS file system support.
- Improved TensorForest performance.
- Added support for multiple filename globs in
tf.matching_files
. LogMessage
now includes a timestamp as beginning of a message.- Added MultiBox person detector example standalone binary.
- Android demo: Makefile build functionality added to build.gradle to fully support building TensorFlow demo in Android on Windows.
- Android demo: read MultiBox priors from txt file rather than protobuf.
- Added colocation constraints to
StagingArea
. sparse_matmul_op
reenabled for Android builds.- Restrict weights rank to be the same as the broadcast target, to avoid ambiguity on broadcast rules.
- Upgraded libxsmm to 1.7.1 and applied other changes for performance and memory usage.
- Fixed bfloat16 integration of LIBXSMM sparse mat-mul.
- Improved performance and reduce memory usage by allowing ops to forward input buffers to output buffers and perform computations in-place.
- Improved the performance of CPU assignment for strings.
- Speed up matrix * vector multiplication and matrix * matrix with unknown shapes.
- C API: Graph imports now support input remapping, control dependencies, and returning imported nodes (see
TF_GraphImportGraphDefWithReturnOutputs()
) - Multiple C++ API updates.
- Multiple TensorBoard updates including:
- Users can now view image summaries at various sampled steps (instead of just the last step).
- Bugs involving switching runs as well as the image dashboard are fixed.
- Removed data download links from TensorBoard.
- TensorBoard uses a relative data directory, for easier embedding.
- TensorBoard automatically ignores outliers for domain calculation, and formats proportional values consistently.
- Multiple tfdbg bug fixes:
- Fixed Windows compatibility issues.
- Command history now persists across runs.
This release contains contributions from many people at Google, as well as:
A. Besir Kurtulmus, Adal Chiriliuc, @akash, Alec-Desouza, Alex Rothberg, Alex Sergeev, Alexander Heinecke, Allen Guo, Andreas Madsen, Ankesh Anand, Anton Loss, @Aravind, @Arie, Ashutosh Das, AuréLien Geron, Bairen Yi, @bakunyo, Ben Visser, Brady Zhou, Calpa Liu, Changming Sun, Chi Zeng, Chih Cheng Liang, Christopher Berner, Clark Zinzow, @Conchylicultor, Courtial Florian, Dan Ellis, Dan J, Dan Jarvis, Daniel Ylitalo, Darren Garvey, David Norman, David Truong, @DavidNorman, Dimitar Pavlov, Dmitry Persiyanov, @Eddie, @elirex, Erfan Noury, Eron Wright, Evgeny Mazovetskiy, Fabrizio (Misto) Milo, @fanlu, Fisher Coder, Franck Dernoncourt, Gagan Goel, Gao, Xiang, @Gautam, Gefu Tang, @guilherme, @guschmue, Hannah Provenza, Hans Pabst, @hartb, Hsiao Yi, Huazuo Gao, Igor ChorążEwicz, Ivan Smirnov, Jakub Kolodziejczyk, Jason Gavris, Jason Morton, Jay Young, Jayaram Bobba, Jeremy Sawruk, Jiaming Liu, Jihun Choi, @jiqiu, Joan Thibault, John C F, Jojy G Varghese, Jon Malmaud, Julian Berman, Julian Niedermeier, Junpeng Lao, Kai Sasaki, @Kankroc, Karl Lessard, Kyle Bostelmann, @Lezcano, Li Yi, Luo Yun, @lurker, Mahmoud-Abuzaina, Mandeep Singh, Marek Kolodziej, Mark Szepieniec, Martial Hue, Medhat Omr, Memo Akten, Michael Gharbi, MichaëL Defferrard, Milan Straka, @MircoT, @mlucool, Muammar Ibn Faisal, Nayana Thorat, @nghiattran, Nicholas Connor, Nikolaas Steenbergen, Niraj Patel, Niranjan Hasabnis, @Panmari, Pavel Bulanov, Philip Pries Henningsen, Philipp Jund, @polonez, Prayag Verma, Rahul Kavi, Raphael Gontijo Lopes, @rasbt, Raven Iqqe, Reid Pryzant, Richard Shin, Rizwan Asif, Russell Kaplan, Ryo Asakura, RüDiger Busche, Saisai Shao, Sam Abrahams, @sanosay, Sean Papay, @seaotterman, @selay01, Shaurya Sharma, Sriram Narayanamoorthy, Stefano Probst, @taknevski, @tbonza, @teldridge11, Yuan (Terry) Tang, Tim Anglade, Tomas Reimers, Tomer Gafner, Valentin Iovene, Vamsi Sripathi, Viktor Malyi, Vit Stepanovs, Vivek Rane, Vlad Firoiu, @wangg12, @will, Xiaoyu Tao, Yaroslav Bulatov, Yuan (Terry) Tang, @Yufeng, Yuming Wang, Yuxin Wu, Zafar Takhirov, Ziming Dong
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- Change GraphConstructor to not increase the version when importing, but instead take the min of all versions.
- Google Cloud Storage fixes.
- Removed
tf.core
andtf.python
modules from the API. These were never intended to be exposed. Please use the same objects through top-leveltf
module instead.
- XLA (experimental): initial release of XLA, a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
- TensorFlow Debugger (tfdbg): command-line interface and API.
- New python 3 docker images added.
- Made pip packages pypi compliant. TensorFlow can now be installed by
pip install tensorflow
command. - Several python API calls have been changed to resemble NumPy more closely.
- Android: person detection + tracking demo implementing Scalable Object Detection using Deep Neural Networks.
- New (experimental) Java API.
- Add new Android image stylization demo based on "A Learned Representation For Artistic Style", and add YOLO object detector support.
To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a conversion script.
- TensorFlow/models have been moved to a separate github repository.
- Division and modulus operators (/, //, %) now match Python (flooring)
semantics. This applies to
tf.div
andtf.mod
as well. To obtain forced integer truncation based behaviors you can usetf.truncatediv
andtf.truncatemod
. tf.divide()
is now the recommended division function.tf.div()
will remain, but its semantics do not respond to Python 3 orfrom future
mechanisms.- tf.reverse() now takes indices of axes to be reversed. E.g.
tf.reverse(a, [True, False, True])
must now be written astf.reverse(a, [0, 2])
.tf.reverse_v2()
will remain until 1.0 final. tf.mul
,tf.sub
andtf.neg
are deprecated in favor oftf.multiply
,tf.subtract
andtf.negative
.tf.pack
andtf.unpack
are deprecated in favor oftf.stack
andtf.unstack
.TensorArray.pack
andTensorArray.unpack
are getting deprecated in favor ofTensorArray.stack
andTensorArray.unstack
.- The following Python functions have had their arguments changed to use
axis
when referring to specific dimensions. We have kept the old keyword arguments for compatibility currently, but we will be removing them well before the final 1.0.tf.argmax
:dimension
becomesaxis
tf.argmin
:dimension
becomesaxis
tf.count_nonzero
:reduction_indices
becomesaxis
tf.expand_dims
:dim
becomesaxis
tf.reduce_all
:reduction_indices
becomesaxis
tf.reduce_any
:reduction_indices
becomesaxis
tf.reduce_join
:reduction_indices
becomesaxis
tf.reduce_logsumexp
:reduction_indices
becomesaxis
tf.reduce_max
:reduction_indices
becomesaxis
tf.reduce_mean
:reduction_indices
becomesaxis
tf.reduce_min
:reduction_indices
becomesaxis
tf.reduce_prod
:reduction_indices
becomesaxis
tf.reduce_sum
:reduction_indices
becomesaxis
tf.reverse_sequence
:batch_dim
becomesbatch_axis
,seq_dim
becomesseq_axis
tf.sparse_concat
:concat_dim
becomesaxis
tf.sparse_reduce_sum
:reduction_axes
becomesaxis
tf.sparse_reduce_sum_sparse
:reduction_axes
becomesaxis
tf.sparse_split
:split_dim
becomesaxis
tf.listdiff
has been renamed totf.setdiff1d
to match NumPy naming.tf.inv
has been renamed to betf.reciprocal
(component-wise reciprocal) to avoid confusion withnp.inv
which is matrix inversion- tf.round now uses banker's rounding (round to even) semantics to match NumPy.
tf.split
now takes arguments in a reversed order and with different keywords. In particular, we now match NumPy order astf.split(value, num_or_size_splits, axis)
.tf.sparse_split
now takes arguments in reversed order and with different keywords. In particular we now match NumPy order astf.sparse_split(sp_input, num_split, axis)
. NOTE: we have temporarily madetf.sparse_split
require keyword arguments.tf.concat
now takes arguments in reversed order and with different keywords. In particular we now match NumPy order astf.concat(values, axis, name)
.tf.image.decode_jpeg
by default uses the faster DCT method, sacrificing a little fidelity for improved speed. One can revert to the old behavior by specifying the attributedct_method='INTEGER_ACCURATE'
.tf.complex_abs
has been removed from the Python interface.tf.abs
supports complex tensors and should be used instead.- In the C++ API (in tensorflow/cc), Input, Output, etc. have moved from the tensorflow::ops namespace to tensorflow.
- Template.
var_scope
property renamed to.variable_scope
- SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
tf.zeros_initializer()
andtf.ones_initializer()
now return a callable that must be called with initializer arguments, in your code replacetf.zeros_initializer
withtf.zeros_initializer()
.SparseTensor.shape
has been renamed toSparseTensor.dense_shape
. Same forSparseTensorValue.shape
.- Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
- Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
- Removes RegisterShape from public API. Use C++ shape function registration instead.
- Deprecated
_ref
dtypes from the python API. - In the C++ API (in tensorflow/cc), Input, Output, etc. have moved from the tensorflow::ops namespace to tensorflow.
- Change arg order for
{softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits
to be (labels, predictions), and force use of named args. - tf.nn.rnn_cell.* and most functions in tf.nn.rnn.* (with the exception of dynamic_rnn and raw_rnn) are temporarily in tf.contrib.rnn. They will be moved back into core for TF 1.2.
tf.nn.sampled_softmax_loss
andtf.nn.nce_loss
have both changed their API such that you need to switch theinputs, labels
tolabels, inputs
parameters.- The shape keyword argument of the
SparseTensor
constructor changes its name todense_shape
between Tensorflow 0.12 and Tensorflow 1.0.
- Numerous C++ API updates.
- New op:
parallel_stack
. - Introducing common tf io compression options constants for RecordReader/RecordWriter.
- Add
sparse_column_with_vocabulary_file
, to specify a feature column that transform string features to IDs, where the mapping is defined by a vocabulary file. - Added
index_to_string_table
which returns a lookup table that maps indices to strings. - Add
string_to_index_table
, which returns a lookup table that matches strings to indices. - Add a
ParallelForWithWorkerId
function. - Add
string_to_index_table
, which returns a lookup table that matches strings to indices. - Support restore session from checkpoint files in v2 in
contrib/session_bundle
. - Added a tf.contrib.image.rotate function for arbitrary angles.
- Added
tf.contrib.framework.filter_variables
as a convenience function to filter lists of variables based on regular expressions. make_template()
takes an optionalcustom_getter_ param
.- Added comment about how existing directories are handled by
recursive_create_dir
. - Added an op for QR factorizations.
- Divides and mods in Python API now use flooring (Python) semantics.
- Android: pre-built libs are now built nightly.
- Android: cmake/gradle build for TensorFlow Inference library under
contrib/android/cmake
- Android: Much more robust Session initialization code.
- Android: TF stats now exposed directly in demo and log when debug mode is active
- Android: new/better README.md documentation
- saved_model is available as
tf.saved_model
. - Empty op is now stateful.
- Improve speed of scatter_update on the cpu for ASSIGN operations.
- Change
reduce_join
to treatreduction_indices
in the same way as otherreduce_
ops. - Move
TensorForestEstimator
tocontrib/tensor_forest
. - Enable compiler optimizations by default and allow configuration in configure.
tf.divide
now honors the name field.- Make metrics weight broadcasting more strict.
- Add new queue-like
StagingArea
and new ops:stage
andunstage
. - Enable inplace update ops for strings on CPU. Speed up string concat.
This release contains contributions from many people at Google, as well as:
Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier, Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt, Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien, @danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith, @guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @Ian, @Issac, Jacob Israel, Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He, Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel, Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla, Pengfei Ni, Przemyslaw Tredak, @rasbt, @Ronny, Rudolf Rosa, @RustingSword, Sam Abrahams, Sam Putnam, @SeongAhJo, Shi Jiaxin, @skavulya, Steffen MüLler, @TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs, Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama, Yuan (Terry) Tang, Yuxin Wu
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- TensorFlow now builds and runs on Microsoft Windows (tested on Windows 10, Windows 7, and Windows Server 2016). Supported languages include Python (via a pip package) and C++. CUDA 8.0 and cuDNN 5.1 are supported for GPU acceleration. Known limitations include: It is not currently possible to load a custom op library. The GCS and HDFS file systems are not currently supported. The following ops are not currently implemented: Dequantize, QuantizeAndDequantize, QuantizedAvgPool, QuantizedBatchNomWithGlobalNormalization, QuantizedBiasAdd, QuantizedConcat, QuantizedConv2D, QuantizedMatmul, QuantizedMaxPool, QuantizeDownAndShrinkRange, QuantizedRelu, QuantizedRelu6, QuantizedReshape, QuantizeV2, RequantizationRange, and Requantize.
- Go: Experimental API in Go to create and execute graphs (https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go)
- New checkpoint format becomes the default in
tf.train.Saver
. Old V1 checkpoints continue to be readable; controlled by thewrite_version
argument,tf.train.Saver
now by default writes out in the new V2 format. It significantly reduces the peak memory required and latency incurred during restore. - Added a new library for library of matrix-free (iterative) solvers for linear equations, linear least-squares, eigenvalues and singular values in tensorflow/contrib/solvers. Initial version has lanczos bidiagonalization, conjugate gradients and CGLS.
- Added gradients for
matrix_solve_ls
andself_adjoint_eig
. - Large cleanup to add second order gradient for ops with C++ gradients and improve existing gradients such that most ops can now be differentiated multiple times.
- Added a solver for ordinary differential equations,
tf.contrib.integrate.odeint
. - New contrib module for tensors with named axes,
tf.contrib.labeled_tensor
. - Visualization of embeddings in TensorBoard.
BusAdjacency
enum replaced with a protocol bufferDeviceLocality
. PCI bus indexing now starts from 1 instead of 0, andbus_id==0
is used where previouslyBUS_ANY
was used.Env::FileExists
andFileSystem::FileExists
now return a tensorflow::Status instead of a bool. Any callers to this function can be converted to a bool by adding .ok() to the call.- The C API type
TF_SessionWithGraph
has been renamed toTF_Session
, indicating its preferred use in language bindings for TensorFlow. What was previouslyTF_Session
has been renamed toTF_DeprecatedSession
. - Renamed
TF_Port
toTF_Output
in the C API. - Removes RegisterShape from public API. Use C++ shape function registration instead.
indexing now starts from 1 instead of 0, and
bus_id==0
is used where previouslyBUS_ANY
was used. - Most RNN cells and RNN functions now use different variable scopes to be
consistent with layers (
tf.contrib.layers
). This means old checkpoints written using this code will not load after this change without providingSaver
a list of variable renames. Examples of variable scope changes includeRNN
->rnn
intf.nn.rnn
,tf.nn.dynamic_rnn
and moving fromLinear/Matrix
->weights
andLinear/Bias
->biases
in most RNN cells. - Deprecated tf.select op. tf.where should be used instead.
SparseTensor.shape
has been renamed toSparseTensor.dense_shape
. Same forSparseTensorValue.shape
.Env::FileExists
andFileSystem::FileExists
now return atensorflow::Status
instead of a bool. Any callers to this function can be converted to a bool by adding.ok()
to the call.- C API: Type
TF_SessionWithGraph
has been renamed toTF_Session
, indicating its preferred use in language bindings for TensorFlow. What was previouslyTF_Session
has been renamed toTF_DeprecatedSession
. - C API: Renamed
TF_Port
toTF_Output
. - C API: The caller retains ownership of
TF_Tensor
objects provided toTF_Run
,TF_SessionRun
,TF_SetAttrTensor
etc. - Renamed
tf.image.per_image_whitening()
totf.image.per_image_standardization()
- Move Summary protobuf constructors to
tf.summary
submodule. - Deprecate
histogram_summary
,audio_summary
,scalar_summary
,image_summary
,merge_summary
, andmerge_all_summaries
. - Combined
batch_*
and regular version of linear algebra and FFT ops. The regular op now handles batches as well. Allbatch_*
Python interfaces were removed. tf.all_variables
,tf.VARIABLES
andtf.initialize_all_variables
renamed totf.global_variables
,tf.GLOBAL_VARIABLES
andtf.global_variables_initializer
respectively.tf.zeros_initializer()
andtf.ones_initializer()
now return a callable that must be called with initializer arguments, in your code replacetf.zeros_initializer
withtf.zeros_initializer()
- Use threadsafe version of
lgamma
function. - Fix
tf.sqrt
handling of negative arguments. - Fixed bug causing incorrect number of threads to be used for multi-threaded benchmarks.
- Performance optimizations for
batch_matmul
on multi-core CPUs. - Improve trace,
matrix_set_diag
,matrix_diag_part
and their gradients to work for rectangular matrices. - Support for SVD of complex valued matrices.
This release contains contributions from many people at Google, as well as:
@a7744hsc, Abhi Agg, @admcrae, Adriano Carmezim, Aki Sukegawa, Alex Kendall, Alexander Rosenberg Johansen, @amcrae, Amlan Kar, Andre Simpelo, Andreas Eberle, Andrew Hundt, Arnaud Lenglet, @b0noI, Balachander Ramachandran, Ben Barsdell, Ben Guidarelli, Benjamin Mularczyk, Burness Duan, @c0g, Changming Sun, @chanis, Corey Wharton, Dan J, Daniel Trebbien, Darren Garvey, David Brailovsky, David Jones, Di Zeng, @DjangoPeng, Dr. Kashif Rasul, @drag0, Fabrizio (Misto) Milo, FabríCio Ceschin, @fp, @Ghedeon, @guschmue, Gökçen Eraslan, Haosdent Huang, Haroen Viaene, Harold Cooper, Henrik Holst, @hoangmit, Ivan Ukhov, Javier Dehesa, Jingtian Peng, Jithin Odattu, Joan Pastor, Johan Mathe, Johannes Mayer, Jongwook Choi, Justus Schwabedal, Kai Wolf, Kamil Hryniewicz, Kamran Amini, Karen Brems, Karl Lattimer, @kborer, Ken Shirriff, Kevin Rose, Larissa Laich, Laurent Mazare, Leonard Lee, Liang-Chi Hsieh, Liangliang He, Luke Iwanski, Marek Kolodziej, Moustafa Alzantot, @MrQianjinsi, @nagachika, Neil Han, Nick Meehan, Niels Ole Salscheider, Nikhil Mishra, @nschuc, Ondrej Skopek, OndřEj Filip, @OscarDPan, Pablo Moyano, Przemyslaw Tredak, @qitaishui, @Quarazy, @raix852, Philipp Helo, Sam Abrahams, @SriramRamesh, Till Hoffmann, Tushar Soni, @tvn, @tyfkda, Uwe Schmidt, Victor Villas, Vit Stepanovs, Vladislav Gubarev, @wujingyue, Xuesong Yang, Yi Liu, Yilei Yang, @youyou3, Yuan (Terry) Tang, Yuming Wang, Zafar Takhirov, @zhongyuk, Ziming Dong, @guotong1988
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- CUDA 8 support.
- cuDNN 5 support.
- HDFS Support.
- Adds Fused LSTM support via cuDNN 5 in
tensorflow/contrib/cudnn_rnn
. - Improved support for NumPy style basic slicing including non-1 strides,
ellipses, newaxis, and negative indices. For example complicated expressions
like
foo[1, 2:4, tf.newaxis, ..., :-3:-1, :]
are now supported. In addition we have preliminary (non-broadcasting) support for sliced assignment to variables. In particular one can writevar[1:3].assign([1,11,111])
. - Deprecated
tf.op_scope
andtf.variable_op_scope
in favor of a unifiedtf.name_scope
andtf.variable_scope
. The new argument order oftf.variable_scope
is incompatible with previous versions. - Introducing
core/util/tensor_bundle
module: a module to efficiently serialize/deserialize tensors to disk. Will be used in TF's new checkpoint format. - Added tf.svd for computing the singular value decomposition (SVD) of dense matrices or batches of matrices (CPU only).
- Added gradients for eigenvalues and eigenvectors computed using
self_adjoint_eig
orself_adjoint_eigvals
. - Eliminated
batch_*
methods for most linear algebra and FFT ops and promoted the non-batch version of the ops to handle batches of matrices. - Tracing/timeline support for distributed runtime (no GPU profiler yet).
- C API gives access to inferred shapes with
TF_GraphGetTensorNumDims
andTF_GraphGetTensorShape
. - Shape functions for core ops have moved to C++ via
REGISTER_OP(...).SetShapeFn(...)
. Python shape inference RegisterShape calls use the C++ shape functions withcommon_shapes.call_cpp_shape_fn
. A future release will removeRegisterShape
from python.
- Documentation now includes operator overloads on Tensor and Variable.
tensorflow.__git_version__
now allows users to identify the version of the code that TensorFlow was compiled with. We also havetensorflow.__git_compiler__
which identifies the compiler used to compile TensorFlow's core.- Improved multi-threaded performance of
batch_matmul
. - LSTMCell, BasicLSTMCell, and MultiRNNCell constructors now default to
state_is_tuple=True
. For a quick fix while transitioning to the new default, simply pass the argumentstate_is_tuple=False
. - DeviceFactory's AddDevices and CreateDevices functions now return a Status instead of void.
- Int32 elements of list(type) arguments are no longer placed in host memory by default. If necessary, a list(type) argument to a kernel can be placed in host memory using a HostMemory annotation.
uniform_unit_scaling_initializer()
no longer takes afull_shape
arg, instead relying on the partition info passed to the initializer function when it's called.- The NodeDef protocol message is now defined in its own file
node_def.proto
instead of graph.proto
. ops.NoGradient
was renamedops.NotDifferentiable
.ops.NoGradient
will be removed soon.dot.h
/ DotGraph was removed (it was an early analysis tool prior to TensorBoard, no longer that useful). It remains in history should someone find the code useful.- re2 / regexp.h was removed from being a public interface of TF. Should users need regular expressions, they should depend on the RE2 library directly rather than via TensorFlow.
This release contains contributions from many people at Google, as well as:
Abid K, @afshinrahimi, @AidanGG, Ajay Rao, Aki Sukegawa, Alex Rothberg, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Thomas, @Appleholic, Bastiaan Quast, Ben Dilday, Bofu Chen, Brandon Amos, Bryon Gloden, Cissp®, @chanis, Chenyang Liu, Corey Wharton, Daeyun Shin, Daniel Julius Lasiman, Daniel Waterworth, Danijar Hafner, Darren Garvey, Denis Gorbachev, @DjangoPeng, Egor-Krivov, Elia Palme, Eric Platon, Fabrizio Milo, Gaetan Semet, Georg Nebehay, Gu Wang, Gustav Larsson, @haosdent, Harold Cooper, Hw-Zz, @ichuang, Igor Babuschkin, Igor Macedo Quintanilha, Ilya Edrenkin, @ironhead, Jakub Kolodziejczyk, Jennifer Guo, Jihun Choi, Jonas Rauber, Josh Bleecher Snyder, @jpangburn, Jules Gagnon-Marchand, Karen Brems, @kborer, Kirill Bobyrev, Laurent Mazare, Longqi Yang, Malith Yapa, Maniteja Nandana, Martin Englund, Matthias Winkelmann, @mecab, Mu-Ik Jeon, Nand Dalal, Niels Ole Salscheider, Nikhil Mishra, Park Jiin, Pieter De Rijk, @raix852, Ritwik Gupta, Sahil Sharma, Sangheum Hwang, @SergejsRk, Shinichiro Hamaji, Simon Denel, @Steve, @suiyuan2009, Tiago Jorge, Tijmen Tieleman, @tvn, @tyfkda, Wang Yang, Wei-Ting Kuo, Wenjian Huang, Yan Chen, @YenChenLin, Yuan (Terry) Tang, Yuncheng Li, Yunfeng Wang, Zack Polizzi, @zhongzyd, Ziming Dong, @perhapszzy
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- Added support for C++ shape inference
- Added graph-construction C API
- Major revision to the graph-construction C++ API
- Support makefile build for iOS
- Added Mac GPU support
- Full version of TF-Slim available as
tf.contrib.slim
- Added k-Means clustering and WALS matrix factorization
- Allow gradient computation for scalar values.
- Performance improvements for gRPC
- Improved support for fp16
- New high-level ops in tf.contrib.{layers,metrics}
- New features for TensorBoard, such as shape display, exponential smoothing
- Faster and more stable Google Cloud Storage (GCS) filesystem support
- Support for zlib compression and decompression for TFRecordReader and TFRecordWriter
- Support for reading (animated) GIFs
- Improved support for SparseTensor
- Added support for more probability distributions (Dirichlet, Beta, Bernoulli, etc.)
- Added Python interfaces to reset resource containers.
- Many bugfixes and performance improvements
- Many documentation fixes
This release contains contributions from many people at Google, as well as:
Alex Rothberg, Andrew Royer, Austin Marshall, @BlackCoal, Bob Adolf, Brian Diesel, Charles-Emmanuel Dias, @chemelnucfin, Chris Lesniewski, Daeyun Shin, Daniel Rodriguez, Danijar Hafner, Darcy Liu, Kristinn R. Thórisson, Daniel Castro, Dmitry Savintsev, Kashif Rasul, Dylan Paiton, Emmanuel T. Odeke, Ernest Grzybowski, Gavin Sherry, Gideon Dresdner, Gregory King, Harold Cooper, @heinzbeinz, Henry Saputra, Huarong Huo, Huazuo Gao, Igor Babuschkin, Igor Macedo Quintanilha, Ivan Ukhov, James Fysh, Jan Wilken Dörrie, Jihun Choi, Johnny Lim, Jonathan Raiman, Justin Francis, @lilac, Li Yi, Marc Khoury, Marco Marchesi, Max Melnick, Micael Carvalho, @mikowals, Mostafa Gazar, Nico Galoppo, Nishant Agrawal, Petr Janda, Yuncheng Li, @raix852, Robert Rose, @Robin-des-Bois, Rohit Girdhar, Sam Abrahams, satok16, Sergey Kishchenko, Sharkd Tu, @shotat, Siddharth Agrawal, Simon Denel, @sono-bfio, SunYeop Lee, Thijs Vogels, @tobegit3hub, @Undo1, Wang Yang, Wenjian Huang, Yaroslav Bulatov, Yuan Tang, Yunfeng Wang, Ziming Dong
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- Python 3.5 support and binaries
- Added iOS support
- Added support for processing on GPUs on MacOS
- Added makefile for better cross-platform build support (C API only)
- fp16 support and improved complex128 support for many ops
- Higher level functionality in contrib.{layers,losses,metrics,learn}
- More features to Tensorboard
- Improved support for string embedding and sparse features
- The RNN api is finally "official" (see, e.g.,
tf.nn.dynamic_rnn
,tf.nn.rnn
, and the classes intf.nn.rnn_cell
). - TensorBoard now has an Audio Dashboard, with associated audio summaries.
- Turned on CuDNN Autotune.
- Added support for using third-party Python optimization algorithms (contrib.opt).
- Google Cloud Storage filesystem support.
- HDF5 support
- Add support for 3d convolutions and pooling.
- Update gRPC release to 0.14.
- Eigen version upgrade.
- Switch to eigen thread pool
tf.nn.moments()
now accepts ashift
argument. Shifting by a good estimate of the mean improves numerical stability. Also changes the behavior of theshift
argument totf.nn.sufficient_statistics()
.- Performance improvements
- Many bugfixes
- Many documentation fixes
- TensorBoard fixes: graphs with only one data point, Nan values, reload button and auto-reload, tooltips in scalar charts, run filtering, stable colors
- Tensorboard graph visualizer now supports run metadata. Clicking on nodes while viewing a stats for a particular run will show runtime statistics, such as memory or compute usage. Unused nodes will be faded out.
This release contains contributions from many people at Google, as well as:
Aaron Schumacher, Aidan Dang, Akihiko ITOH, Aki Sukegawa, Arbit Chen, Aziz Alto, Danijar Hafner, Erik Erwitt, Fabrizio Milo, Felix Maximilian Möller, Henry Saputra, Sung Kim, Igor Babuschkin, Jan Zikes, Jeremy Barnes, Jesper Steen Møller, Johannes Mayer, Justin Harris, Kashif Rasul, Kevin Robinson, Loo Rong Jie, Lucas Moura, Łukasz Bieniasz-Krzywiec, Mario Cho, Maxim Grechkin, Michael Heilman, Mostafa Rahmani, Mourad Mourafiq, @ninotoshi, Orion Reblitz-Richardson, Yuncheng Li, @raoqiyu, Robert DiPietro, Sam Abrahams, Sebastian Raschka, Siddharth Agrawal, @snakecharmer1024, Stephen Roller, Sung Kim, SunYeop Lee, Thijs Vogels, Till Hoffmann, Victor Melo, Ville Kallioniemi, Waleed Abdulla, Wenjian Huang, Yaroslav Bulatov, Yeison Rodriguez, Yuan Tang, Yuxin Wu, @zhongzyd, Ziming Dong, Zohar Jackson
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- Added a distributed runtime using GRPC
- Move skflow to
contrib/learn
- Better linear optimizer in
contrib/linear_optimizer
- Random forest implementation in
contrib/tensor_forest
- CTC loss and decoders in
contrib/ctc
- Basic support for
half
data type - Better support for loading user ops (see examples in
contrib/
) - Allow use of (non-blocking) Eigen threadpool with
TENSORFLOW_USE_EIGEN_THREADPOOL
define - Add an extension mechanism for adding network file system support
- TensorBoard displays metadata stats (running time, memory usage and device used) and tensor shapes
- Utility for inspecting checkpoints
- Basic tracing and timeline support
- Allow building against cuDNN 5 (not incl. RNN/LSTM support)
- Added instructions and binaries for ProtoBuf library with fast serialization and without 64MB limit
- Added special functions
bool
-strictness: Tensors have to be explicitly compared toNone
- Shape strictness: all fed values must have a shape that is compatible with the tensor they are replacing
- Exposed
tf.while_loop
(deprecatedcontrol_flow_ops.While
) - run() now takes RunOptions and RunMetadata, which enable timing stats
- Fixed lots of potential overflow problems in op kernels
- Various performance improvements, especially for RNNs and convolutions
- Many bugfixes
- Nightly builds, tutorial tests, many test improvements
- New examples: transfer learning and deepdream ipython notebook
- Added tutorials, many documentation fixes.
This release contains contributions from many people at Google, as well as:
Abhinav Upadhyay, Aggelos Avgerinos, Alan Wu, Alexander G. de G. Matthews, Aleksandr Yahnev, @amchercashin, Andy Kitchen, Aurelien Geron, Awni Hannun, @BanditCat, Bas Veeling, Cameron Chen, @cg31, Cheng-Lung Sung, Christopher Bonnett, Dan Becker, Dan Van Boxel, Daniel Golden, Danijar Hafner, Danny Goodman, Dave Decker, David Dao, David Kretch, Dongjoon Hyun, Dustin Dorroh, @e-lin, Eurico Doirado, Erik Erwitt, Fabrizio Milo, @gaohuazuo, Iblis Lin, Igor Babuschkin, Isaac Hodes, Isaac Turner, Iván Vallés, J Yegerlehner, Jack Zhang, James Wexler, Jan Zikes, Jay Young, Jeff Hodges, @jmtatsch, Johnny Lim, Jonas Meinertz Hansen, Kanit Wongsuphasawat, Kashif Rasul, Ken Shirriff, Kenneth Mitchner, Kenta Yonekura, Konrad Magnusson, Konstantin Lopuhin, @lahwran, @lekaha, @liyongsea, Lucas Adams, @makseq, Mandeep Singh, @manipopopo, Mark Amery, Memo Akten, Michael Heilman, Michael Peteuil, Nathan Daly, Nicolas Fauchereau, @ninotoshi, Olav Nymoen, @panmari, @papelita1234, Pedro Lopes, Pranav Sailesh Mani, RJ Ryan, Rob Culliton, Robert DiPietro, @ronrest, Sam Abrahams, Sarath Shekkizhar, Scott Graham, Sebastian Raschka, Sung Kim, Surya Bhupatiraju, Syed Ahmed, Till Hoffmann, @timsl, @urimend, @vesnica, Vlad Frolov, Vlad Zagorodniy, Wei-Ting Kuo, Wenjian Huang, William Dmitri Breaden Madden, Wladimir Schmidt, Yuan Tang, Yuwen Yan, Yuxin Wu, Yuya Kusakabe, @zhongzyd, @znah.
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
- Added gfile.Open and gfile.Copy, used by input_data.py.
- Fixed Saver bug when MakeDirs tried to create empty directory.
- GPU Pip wheels are built with cuda 7.5 and cudnn-v4, making them required for the binary releases. Lower versions of cuda/cudnn can be supported by installing from sources and setting the options during ./configure
- Fix dataset encoding example for Python3 (@danijar)
- Fix PIP installation by not packaging protobuf as part of wheel, require protobuf 3.0.0b2.
- Fix Mac pip installation of numpy by requiring pip >= 1.10.1.
- Improvements and fixes to Docker image.
- Allow using any installed Cuda >= 7.0 and cuDNN >= R2, and add support for cuDNN R4
- Added a
contrib/
directory for unsupported or experimental features, including higher levellayers
module - Added an easy way to add and dynamically load user-defined ops
- Built out a good suite of tests, things should break less!
- Added
MetaGraphDef
which makes it easier to save graphs with metadata - Added assignments for "Deep Learning with TensorFlow" udacity course
- Added a versioning framework for
GraphDef
s to ensure compatibility - Enforced Python 3 compatibility
- Internal changes now show up as sensibly separated commits
- Open-sourced the doc generator
- Un-fork Eigen
- Simplified the
BUILD
files and cleaned up C++ headers - TensorFlow can now be used as a submodule in another bazel build
- New ops (e.g.,
*fft
,*_matrix_solve
) - Support for more data types in many ops
- Performance improvements
- Various bugfixes
- Documentation fixes and improvements
AdjustContrast
kernel deprecated, new kernelAdjustContrastv2
takes and outputs float only.adjust_contrast
now takes all data types.adjust_brightness
'sdelta
argument is now always assumed to be in[0,1]
(as is the norm for images in floating point formats), independent of the data type of the input image.- The image processing ops do not take
min
andmax
inputs any more, casting safety is handled bysaturate_cast
, which makes sure over- and underflows are handled before casting to data types with smaller ranges. - For C++ API users:
IsLegacyScalar
andIsLegacyVector
are now gone fromTensorShapeUtils
since TensorFlow is scalar strict within Google (for example, the shape argument totf.reshape
can't be a scalar anymore). The open source release was already scalar strict, so outside GoogleIsScalar
andIsVector
are exact replacements. - The following files are being removed from
tensorflow/core/public/
:env.h
->../platform/env.h
status.h
->../lib/core/status.h
tensor.h
->../framework/tensor.h
tensor_shape.h
->../framework/tensor_shape.h
partial_tensor_shape.h
->../framework/partial_tensor_shape.h
tensorflow_server.h
deleted
- For C++ API users:
TensorShape::ShortDebugString
has been renamed toDebugString
, and the previousDebugString
behavior is gone (it was needlessly verbose and produced a confusing empty string for scalars). GraphOptions.skip_common_subexpression_elimination
has been removed. All graph optimizer options are now specified viaGraphOptions.OptimizerOptions
.ASSERT_OK
/EXPECT_OK
macros conflicted with external projects, so they were renamedTF_ASSERT_OK
,TF_EXPECT_OK
. The existing macros are currently maintained for short-term compatibility but will be removed.- The non-public
nn.rnn
and the variousnn.seq2seq
methods now return just the final state instead of the list of all states. tf.scatter_update
now no longer guarantees that lexicographically largest index be used for update when duplicate entries exist.tf.image.random_crop(image, [height, width])
is nowtf.random_crop(image, [height, width, depth])
, andtf.random_crop
works for any rank (not just 3-D images). The C++RandomCrop
op has been replaced with pure Python.- Renamed
tf.test.GetTempDir
andtf.test.IsBuiltWithCuda
totf.test.get_temp_dir
andtf.test.is_built_with_cuda
for PEP-8 compatibility. parse_example
's interface has changed, the old interface is accessible inlegacy_parse_example
(same for related functions).- New
Variable
s are not added to the same collection several times even if a list with duplicates is passed to the constructor. - The Python API will now properly set the
list
member ofAttrValue
in constructedGraphDef
messages for empty lists. The serialization of some graphs will change, but the change is both forwards and backwards compatible. It will break tests that compare a generatedGraphDef
to a golden serializedGraphDef
(which is discouraged).
This release contains contributions from many people at Google, as well as:
Akiomi Kamakura, Alex Vig, Alexander Rosenberg Johansen, Andre Cruz, Arun Ahuja, Bart Coppens, Bernardo Pires, Carl Vondrick, Cesar Salgado, Chen Yu, Christian Jauvin, Damien Aymeric, Dan Vanderkam, Denny Britz, Dongjoon Hyun, Eren Güven, Erik Erwitt, Fabrizio Milo, G. Hussain Chinoy, Jim Fleming, Joao Felipe Santos, Jonas Meinertz Hansen, Joshi Rekha, Julian Viereck, Keiji Ariyama, Kenton Lee, Krishna Sankar, Kristina Chodorow, Linchao Zhu, Lukas Krecan, Mark Borgerding, Mark Daoust, Moussa Taifi, Nathan Howell, Naveen Sundar Govindarajulu, Nick Sweeting, Niklas Riekenbrauck, Olivier Grisel, Patrick Christ, Povilas Liubauskas, Rainer Wasserfuhr, Romain Thouvenin, Sagan Bolliger, Sam Abrahams, Taehoon Kim, Timothy J Laurent, Vlad Zavidovych, Yangqing Jia, Yi-Lin Juang, Yuxin Wu, Zachary Lipton, Zero Chen, Alan Wu, @brchiu, @emmjaykay, @jalammar, @Mandar-Shinde, @nsipplswezey, @ninotoshi, @panmari, @prolearner and @rizzomichaelg.
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.
-
Python 3.3+ support via changes to python codebase and ability to specify python version via ./configure.
-
Some improvements to GPU performance and memory usage: convnet benchmarks roughly equivalent with native cudnn v2 performance. Improvements mostly due to moving to 32-bit indices, faster shuffling kernels. More improvements to come in later releases.
-
Lots of fixes to documentation and tutorials, many contributed by the public.
-
271 closed issues on github issues.
tf.nn.fixed_unigram_candidate_sampler
changed its default 'distortion' attribute from 0.0 to 1.0. This was a bug in the original release that is now fixed.
Initial release of TensorFlow.