-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathPointCloud.py
797 lines (754 loc) · 49.4 KB
/
PointCloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
"""
Author: Konstantinos Angelopoulos
Date: 12/04/2020
All rights reserved.
Feel free to use and modify and if you like it give it a star.
"""
from pyqtgraph.Qt import QtCore, QtGui
import pyqtgraph.opengl as gl
import numpy as np
from pykinect2.PyKinectV2 import *
from pykinect2 import PyKinectV2
from pykinect2 import PyKinectRuntime
import mapper
import time
import cv2
from cv2 import WINDOW_FREERATIO
import sys
import os
import ctypes
import open3d as o3d
class Cloud:
def __init__(self, file="", dynamic=False, color=False, depth=False, body=False, skeleton=False, simultaneously=False, color_overlay=False):
"""
Initializes the point cloud
file: The dir to the point cloud (either .txt, .ply or .pcd file)
dynamic: Flag for displaying the pointcloud dynamically
color: Flag for displaying the color pointcloud dynamically
depth: Flag for displaying the depth pointcloud dynamically
body: Flag for displaying the body index pointcloud dynamically
skeleton: Flag for displaying the skeleton index pointcloud dynamically
simultaneously: Flag for displaying more than one pointcloud dynamically (when one of the pointcloud is the skeleton you have to scroll out to see the pointcloud)
:return None
"""
# Initialize Kinect object
self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color|PyKinectV2.FrameSourceTypes_Depth|PyKinectV2.FrameSourceTypes_Body|PyKinectV2.FrameSourceTypes_BodyIndex)
self._body_index = None # save body index image
self._body_index_points = None # save body index points
self._cloud = False # Flag to break loop when creating a pointcloud
self._depth = None # Store last depth frame
self._color_frame = None # store the last color frame
self._red = 0 # Store red value from cv2 track bar
self._green = 0 # Store green value from cv2 track bar
self._blue = 0 # Store blue value from cv2 track bar
self._size = 0.5 # Store value of point size from cv2 track bar
self._opacity = 0 # store opacity value of colors from cv2 track bar
self._dt = .0 # Store time value since kinect started from cv2 track bar
self._skeleton_points = None # store multiple skeleton points
self._color_point_cloud = color # Flag to show dynamic point cloud using the color frame
self._depth_point_cloud = depth # Flag to show dynamic point cloud using the depth frame
self._simultaneously_point_cloud = simultaneously # Flag for simultaneously showing the point clouds
self._skeleton_point_cloud = skeleton # Flag for showing the skeleton cloud
self._dynamic = dynamic # Flag for initializing a dynamic pointcloud
self._cloud_file = file # Store the file name
self._body_index_cloud = body # save body flag
self._color_overlay = color_overlay # flag to display the rgb image color up to the pointcloud
self._dir_path = os.path.dirname(os.path.realpath(__file__)) # Store the absolute path of the file
self._body_frame = None # store body frame data
self._joints = None # save skeleton joints
self._bodies_indexes = None # save tracked skeleton indexes
self._world_points = None # Store world points
self._color_point_cloud_points = None # store color cloud points for simultaneously showing
self._depth_point_cloud_points = None # store depth cloud points for simultaneously showing
self._body_point_cloud_points = None # store body cloud points for simultaneously showing
self._skeleton_point_cloud_points = None # store skeleton cloud points for simultaneously showing
self._simultaneously_point_cloud_points = None # stack all the points
self._skeleton_colors = np.asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [0, 1, 1], [1, 0, 1]], dtype=np.float32) # skeleton color pallet
self._app = QtGui.QApplication([]) # Initialize app
self._w = gl.GLViewWidget() # Initialize view widget
# Change view point
self._w.orbit(225, -30)
# self._w.pan(0, -2000, 0) # make the camera fixed to a point
# self._w.opts['viewport'] = (0, 0, 960, 540)
self._w.showMaximized() # show window maximized
# self._w.setMaximumSize(960, 540)
self._w.setWindowTitle('Kinect PointCloud') # window title
self._w.show() # show app
# self._g = gl.GLGridItem() # adds a grid to the 3d space
# self._g.setSize(x=1500, y=1500, z=1500)
# self._w.addItem(self._g)
self._scatter = None # Store GL Scatter handler
self._color = None # Store color for each point
self._t = None # Store starting time for pointcloud
self._start = True # Flag for saving the main loop status
self._start_gui = False # Flag for stopping the main loop and exit when close
self._dynamic_point_cloud = None # Store the calculated point cloud points
self._configurations = "configurations_input_window" # cv2 window name for color and size
self.create_track_bars() # create track bars
# check for multiple input flags or no input flags when using dynamic point cloud only
if not self._simultaneously_point_cloud:
if any([self._color_point_cloud and self._depth_point_cloud and self._body_index_cloud and self._skeleton_point_cloud,
self._dynamic and not self._color_point_cloud and not self._depth_point_cloud and not self._body_index_cloud and not self._skeleton_point_cloud,
self._color_point_cloud and self._depth_point_cloud,
self._color_point_cloud and self._body_index_cloud,
self._color_point_cloud and self._skeleton_point_cloud,
self._depth_point_cloud and self._body_index_cloud,
self._depth_point_cloud and self._skeleton_point_cloud,
self._body_index_cloud and self._skeleton_point_cloud]):
# check for multiple flag inputs
print('[CloudPoint] Too many arguments, choose color or depth pointcloud')
print('Example 1 :\n pcl = Cloud(dynamic=True, color=True) \n pcl.visualize()')
print('Example 2 :\n pcl = Cloud(dynamic=True, depth=True) \n pcl.visualize()')
print('Example 3 :\n pcl = Cloud(dynamic=True, body=True) \n pcl.visualize()')
print('Example 4 :\n pcl = Cloud(dynamic=True, skeleton=True) \n pcl.visualize()')
sys.exit()
else:
if self._dynamic:
self.init()
else:
if self._cloud_file != "":
# check if file is not a txt and is a pcd file
if self._cloud_file[-4:] == '.pcd' or self._cloud_file[-4:] == '.ply':
self.visualize_file()
elif self._cloud_file[-4:] == '.txt':
self.init() # Initialize the GL GUI
else:
if '.' in self._cloud_file:
extension = '.' + self._cloud_file.split('.')[-1]
print('[CloudPoint] Not supported file extension ({})'.format(extension))
print('[CloudPoint] Only .txt, .pcd or .ply files are supported')
else:
print('[CloudPoint] Input has no valid file extension')
sys.exit()
else:
if self._dynamic:
if any([self._color_point_cloud and self._depth_point_cloud, self._color_point_cloud and self._body_index_cloud,
self._color_point_cloud and self._skeleton_point_cloud, self._depth_point_cloud and self._body_index_cloud,
self._depth_point_cloud and self._skeleton_point_cloud, self._body_index_cloud and self._skeleton_point_cloud]):
self.init() # Initialize the GL GUI
else:
# check for multiple flag inputs
print('[CloudPoint] Not Enough arguments, choose at least two methods of point clouds')
print('Example 1 :\n pcl = Cloud(dynamic=True, color=True, depth=True, simultaneously=True) \n pcl.visualize()')
print('Example 2 :\n pcl = Cloud(dynamic=True, color=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 3 :\n pcl = Cloud(dynamic=True, color=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 4 :\n pcl = Cloud(dynamic=True, depth=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 5 :\n pcl = Cloud(dynamic=True, depth=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 6 :\n pcl = Cloud(dynamic=True, body=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 7 :\n pcl = Cloud(dynamic=True, color=True, depth=True, body=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 8 :\n pcl = Cloud(dynamic=True, color=True, depth=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 9 :\n pcl = Cloud(dynamic=True, color=True, depth=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 10 :\n pcl = Cloud(dynamic=True, color=True, skeleton=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 11 :\n pcl = Cloud(dynamic=True, depth=True, skeleton=True, body=True, simultaneously=True) \n pcl.visualize()')
sys.exit()
else:
# check for multiple flag inputs
print('[CloudPoint] Not Enough arguments, choose at least two methods of point clouds')
print('Example 1 :\n pcl = Cloud(dynamic=True, color=True, depth=True, simultaneously=True) \n pcl.visualize()')
print('Example 2 :\n pcl = Cloud(dynamic=True, color=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 3 :\n pcl = Cloud(dynamic=True, color=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 4 :\n pcl = Cloud(dynamic=True, depth=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 5 :\n pcl = Cloud(dynamic=True, depth=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 6 :\n pcl = Cloud(dynamic=True, body=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 7 :\n pcl = Cloud(dynamic=True, color=True, depth=True, body=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 8 :\n pcl = Cloud(dynamic=True, color=True, depth=True, skeleton=True, simultaneously=True) \n pcl.visualize()')
print('Example 9 :\n pcl = Cloud(dynamic=True, color=True, depth=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 10 :\n pcl = Cloud(dynamic=True, color=True, skeleton=True, body=True, simultaneously=True) \n pcl.visualize()')
print('Example 11 :\n pcl = Cloud(dynamic=True, depth=True, skeleton=True, body=True, simultaneously=True) \n pcl.visualize()')
sys.exit()
if self._cloud_file != "":
# check if file is not a txt and is a pcd file
if self._cloud_file[-4:] == '.pcd' or self._cloud_file[-4:] == '.ply':
self.visualize_file()
elif self._cloud_file[-4:] == '.txt':
self.init() # Initialize the GL GUI
else:
if '.' in self._cloud_file:
extension = '.' + self._cloud_file.split('.')[-1]
print('[CloudPoint] Not supported file extension ({})'.format(extension))
print('[CloudPoint] Only .txt, .pcd or .ply files are supported')
else:
print('[CloudPoint] Input has no valid file extension')
sys.exit()
def create_track_bars(self):
# Create window for track bars
cv2.namedWindow(self._configurations, WINDOW_FREERATIO)
cv2.createTrackbar("Size", self._configurations, 5, 350, self.nothing)
cv2.createTrackbar("SkeletonSize", self._configurations, 0, 350, self.nothing)
cv2.createTrackbar("Red", self._configurations, 255, 255, self.nothing)
cv2.createTrackbar("Green", self._configurations, 255, 255, self.nothing)
cv2.createTrackbar("Blue", self._configurations, 255, 255, self.nothing)
cv2.createTrackbar("Opacity", self._configurations, 255, 255, self.nothing)
cv2.createTrackbar("ColorOverlay", self._configurations, 0, 1, self.nothing)
cv2.createTrackbar("Color Cloud", self._configurations, 0, 1, self.nothing)
cv2.createTrackbar("Depth Cloud", self._configurations, 0, 1, self.nothing)
cv2.createTrackbar("Body Cloud", self._configurations, 0, 1, self.nothing)
cv2.createTrackbar("Skeleton Cloud", self._configurations, 0, 1, self.nothing)
cv2.createTrackbar("Simultaneously", self._configurations, 0, 1, self.nothing)
# update the positions
if self._color_point_cloud:
cv2.setTrackbarPos("Color Cloud", self._configurations, 1)
if self._depth_point_cloud:
cv2.setTrackbarPos("Depth Cloud", self._configurations, 1)
if self._body_index_cloud:
cv2.setTrackbarPos("Body Cloud", self._configurations, 1)
if self._skeleton_point_cloud:
cv2.setTrackbarPos("Skeleton Cloud", self._configurations, 1)
if self._simultaneously_point_cloud:
cv2.setTrackbarPos("Simultaneously", self._configurations, 1)
cv2.setTrackbarPos("SkeletonSize", self._configurations, 20)
if self._color_overlay:
cv2.setTrackbarPos("ColorOverlay", self._configurations, 1)
cv2.setTrackbarPos("Size", self._configurations, 30)
def nothing(self, x):
"""
For handling the callback from the cv2 track bar
x: The callback returned for the cv2 track bar
:return None
"""
pass
def create_points(self):
"""
Check if the file exists and if not create the point cloud points and the file
:return None
"""
# Check if the file exists in the folder
if not os.path.exists(os.path.join(self._dir_path, self._cloud_file)):
if self._depth_point_cloud or self._color_point_cloud:
t = time.time() # starting time
while not self._cloud:
# ----- Get Depth Frame
if self._kinect.has_new_depth_frame():
# store depth frame
self._depth = self._kinect.get_last_depth_frame()
# ----- Get Color Frame
if self._kinect.has_new_color_frame():
# store color frame
self._color_frame = self._kinect.get_last_color_frame()
# wait for kinect to grab at least one depth frame
if self._kinect.has_new_depth_frame() and self._color_frame is not None and self._dt > 6:
# use mapper to get world points
if self._depth_point_cloud:
world_points = mapper.depth_2_world(self._kinect, self._kinect._depth_frame_data, _CameraSpacePoint)
world_points = ctypes.cast(world_points, ctypes.POINTER(ctypes.c_float))
world_points = np.ctypeslib.as_array(world_points, shape=(self._kinect.depth_frame_desc.Height * self._kinect.depth_frame_desc.Width, 3))
world_points *= 1000 # transform to mm
self._dynamic_point_cloud = np.ndarray(shape=(len(world_points), 3), dtype=np.float32)
# transform to mm
self._dynamic_point_cloud[:, 0] = world_points[:, 0]
self._dynamic_point_cloud[:, 1] = world_points[:, 2]
self._dynamic_point_cloud[:, 2] = world_points[:, 1]
if self._cloud_file[-4:] == '.txt':
# remove zero depths
self._dynamic_point_cloud = self._dynamic_point_cloud[self._dynamic_point_cloud[:, 1] != 0]
self._dynamic_point_cloud = self._dynamic_point_cloud[np.all(self._dynamic_point_cloud != float('-inf'), axis=1)]
if self._cloud_file[-4:] == '.ply' or self._cloud_file[-4:] == '.pcd':
# update color for .ply file only
self._color = np.zeros((len(self._dynamic_point_cloud), 3), dtype=np.float32)
# map color to depth frame
Xs, Ys = mapper.color_2_depth_space(self._kinect, _ColorSpacePoint, self._kinect._depth_frame_data, show=False)
color_img = self._color_frame.reshape((self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4)).astype(np.uint8)
# make align rgb/d image
align_color_img = np.zeros((self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width, 4), dtype=np.uint8)
align_color_img[:, :] = color_img[Ys, Xs, :]
align_color_img = align_color_img.reshape((self._kinect.depth_frame_desc.Height * self._kinect.depth_frame_desc.Width, 4)).astype(np.uint8)
align_color_img = align_color_img[:, :3:] # remove the fourth opacity channel
align_color_img = align_color_img[..., ::-1] # transform from bgr to rgb
self._color[:, 0] = align_color_img[:, 0]
self._color[:, 1] = align_color_img[:, 1]
self._color[:, 2] = align_color_img[:, 2]
if self._color_point_cloud:
# use mapper to get world points from color sensor
world_points = mapper.color_2_world(self._kinect, self._kinect._depth_frame_data, _CameraSpacePoint)
world_points = ctypes.cast(world_points, ctypes.POINTER(ctypes.c_float))
world_points = np.ctypeslib.as_array(world_points, shape=(self._kinect.color_frame_desc.Height * self._kinect.color_frame_desc.Width, 3))
world_points *= 1000 # transform to mm
# transform the point cloud to np (424*512, 3) array
self._dynamic_point_cloud = np.ndarray(shape=(len(world_points), 3), dtype=np.float32)
self._dynamic_point_cloud[:, 0] = world_points[:, 0]
self._dynamic_point_cloud[:, 1] = world_points[:, 2]
self._dynamic_point_cloud[:, 2] = world_points[:, 1]
if self._cloud_file[-4:] == '.txt':
# remove zeros from array
self._dynamic_point_cloud = self._dynamic_point_cloud[self._dynamic_point_cloud[:, 1] != 0]
self._dynamic_point_cloud = self._dynamic_point_cloud[np.all(self._dynamic_point_cloud != float('-inf'), axis=1)]
if self._cloud_file[-4:] == '.ply' or self._cloud_file[-4:] == '.pcd':
# update color for .ply file only
self._color = np.zeros((len(self._dynamic_point_cloud), 3), dtype=np.float32)
# get color image
color_img = self._color_frame.reshape((self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4)).astype(np.uint8)
color_img = color_img.reshape((self._kinect.color_frame_desc.Height * self._kinect.color_frame_desc.Width, 4))
color_img = color_img[:, :3:] # remove the fourth opacity channel
color_img = color_img[..., ::-1] # transform from bgr to rgb
# update color with rgb color
self._color[:, 0] = color_img[:, 0]
self._color[:, 1] = color_img[:, 1]
self._color[:, 2] = color_img[:, 2]
# write points for txt file
if self._cloud_file[-4:] == '.txt':
row =''.join(','.join(str(point).strip('[]') for point in xyz) + '\n' for xyz in self._dynamic_point_cloud)
with open(os.path.join(self._dir_path, self._cloud_file), 'a') as txt_file:
txt_file.write(row)
self._cloud = True # break loop
self._dt = time.time() - t # running time
else:
print('[CloudPoint] No sensor flag checked')
print('Example 1 :\n pcl = Cloud(file=filename, color=True) \n pcl.visualize()')
print('Example 2 :\n pcl = Cloud(file=filename, depth=True) \n pcl.visualize()')
sys.exit()
def load_data(self):
"""
Calculates the point cloud points only for one time for initialization purposes only
:return None
"""
# check for dynamic
if not self._dynamic:
# check if points are produced from pointcloud
if self._dynamic_point_cloud is None:
# Load data if file already existed
with open(os.path.join(self._dir_path, self._cloud_file), 'r') as file:
# from string to float
data = [x for x in file.read().split('\n')]
data = [x.split(',') for x in data]
# transform to array [:, 3]
points = np.ndarray(shape=(len(data), 3), dtype=np.float32)
for i, x in enumerate(data):
try:
points[i] = [float(x[0]), float(x[1]), float(x[2])]
except Exception as e:
pass
# save points
# self._dynamic_point_cloud = points[points[:, 1] != 0] # its taken care in create_points function
self._dynamic_point_cloud = points
# save color for points
self._color = np.zeros((self._dynamic_point_cloud.shape[0], 4), dtype=np.float32)
else:
# initialize zeros points just for initialization
self._dynamic_point_cloud = np.ndarray(shape=(2, 3), dtype=np.float32)
# Initialize color and plot the scatter points
self._color = np.zeros((len(self._dynamic_point_cloud), 4), dtype=np.float32)
self._color[:, :] = 1
self._scatter = gl.GLScatterPlotItem(pos=self._dynamic_point_cloud, size=self._size, color=self._color) # create first scatter points
self._w.addItem(self._scatter) # add items
def update(self):
"""
Update the position and color of the points inside the point cloud
This functions is run in a thread loop and all code is optimized using
numpy that runs in C to run faster.
:return None
"""
# Get track bar values
self._size = cv2.getTrackbarPos("Size", self._configurations) / 10
self._red = cv2.getTrackbarPos("Red", self._configurations)
self._green = cv2.getTrackbarPos("Green", self._configurations)
self._blue = cv2.getTrackbarPos("Blue", self._configurations)
self._opacity = cv2.getTrackbarPos("Opacity", self._configurations)
self._color_overlay = cv2.getTrackbarPos("ColorOverlay", self._configurations)
# update the input track bar positions
color = cv2.getTrackbarPos("Color Cloud", self._configurations)
depth = cv2.getTrackbarPos("Depth Cloud", self._configurations)
body = cv2.getTrackbarPos("Body Cloud", self._configurations)
skeleton = cv2.getTrackbarPos("Skeleton Cloud", self._configurations)
simultaneously = cv2.getTrackbarPos("Simultaneously", self._configurations)
self._color_point_cloud = True if color == 1 else False
self._simultaneously_point_cloud = True if simultaneously == 1 else False
self._depth_point_cloud = True if depth == 1 else False
self._body_index_cloud = True if body == 1 else False
self._skeleton_point_cloud = True if skeleton == 1 else False
# only for dynamic pointcloud
if self._dynamic:
# for color point cloud
if self._color_point_cloud:
# update the color points position
self._world_points = mapper.color_2_world(self._kinect, self._kinect._depth_frame_data, _CameraSpacePoint, as_array=False)
self._world_points = ctypes.cast(self._world_points, ctypes.POINTER(ctypes.c_float))
self._world_points = np.ctypeslib.as_array(self._world_points, shape=(self._kinect.color_frame_desc.Height * self._kinect.color_frame_desc.Width, 3))
# store points
self._dynamic_point_cloud = np.ndarray(shape=(len(self._world_points), 3), dtype=np.float32)
self._dynamic_point_cloud[:, 0] = self._world_points[:, 0] * 1000
self._dynamic_point_cloud[:, 1] = self._world_points[:, 2] * 1000
self._dynamic_point_cloud[:, 2] = self._world_points[:, 1] * 1000
# remove zeros from array (it only has -inf instead of zeros like the depth frame)
# self._dynamic_point_cloud = self._dynamic_point_cloud[self._dynamic_point_cloud[:, 1] != 0]
# remove -inf (too slow)
# self._dynamic_point_cloud = self._dynamic_point_cloud[np.all(self._dynamic_point_cloud != float('-inf'), axis=1)]
# for simultaneously point clouds
if self._simultaneously_point_cloud:
self._color_point_cloud_points = self._dynamic_point_cloud
# for depth point cloud
if self._depth_point_cloud:
self._world_points = mapper.depth_2_world(self._kinect, self._kinect._depth_frame_data, _CameraSpacePoint)
self._world_points = ctypes.cast(self._world_points, ctypes.POINTER(ctypes.c_float))
self._world_points = np.ctypeslib.as_array(self._world_points, shape=(self._kinect.depth_frame_desc.Height * self._kinect.depth_frame_desc.Width, 3))
# store points
self._dynamic_point_cloud = np.ndarray(shape=(len(self._world_points), 3), dtype=np.float32)
self._dynamic_point_cloud[:, 0] = self._world_points[:, 0] * 1000
self._dynamic_point_cloud[:, 1] = self._world_points[:, 2] * 1000
self._dynamic_point_cloud[:, 2] = self._world_points[:, 1] * 1000
# remove -inf (too slow)
# self._dynamic_point_cloud = self._dynamic_point_cloud[np.all(self._dynamic_point_cloud != float('-inf'), axis=1)]
# simultaneously point cloud
if self._simultaneously_point_cloud:
self._depth_point_cloud_points = self._dynamic_point_cloud
# for body index point cloud
if self._body_index_cloud:
try:
# search for body index
self._body_index = self._kinect.get_last_body_index_frame().reshape((self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width)).astype(np.uint8)
# keep only the body index frame pixels
self._body_index_points = np.where(self._body_index != 255)
self._body_index_points = np.column_stack((self._body_index_points[0], self._body_index_points[1]))
self._body_index_points = self._body_index_points[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1] <= 512 * 424 - 1]
# calculate the world points from depth
world = mapper.depth_2_world_table(self._kinect, _DepthSpacePoint, as_array=False)
world = ctypes.cast(world, ctypes.POINTER(ctypes.c_float))
world = np.ctypeslib.as_array(world, shape=(self._kinect.depth_frame_desc.Height * self._kinect.depth_frame_desc.Width, 2))
# get the depth frame
depth = self._kinect.get_last_depth_frame()
# calculate the world points for each body index frame pixel
self._dynamic_point_cloud = np.ndarray(shape=(len(self._body_index_points), 3), dtype=np.float32)
self._dynamic_point_cloud[:, 0] = world[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 0] * 1000
self._dynamic_point_cloud[:, 1] = depth[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]]
self._dynamic_point_cloud[:, 2] = world[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 1] * 1000
# remove zero depth pixels
self._dynamic_point_cloud = self._dynamic_point_cloud[self._dynamic_point_cloud[:, 1] != 0]
except:
# if no body frame is tracked then plot zeros
self._dynamic_point_cloud = np.ndarray(shape=(2, 3), dtype=np.float32)
# simultaneously point cloud
if self._simultaneously_point_cloud:
self._body_point_cloud_points = self._dynamic_point_cloud
# for skeleton pointcloud
if self._skeleton_point_cloud:
try:
# search for tracked skeleton
self._bodies_indexes = []
# get body frame
self._body_frame = self._kinect.get_last_body_frame()
for i in range(0, self._kinect.max_body_count):
body = self._body_frame.bodies[i]
if not body.is_tracked:
continue
self._bodies_indexes.append(i)
# calculate the skeleton joints for each tracked skeleton
self._dynamic_point_cloud = np.ndarray(shape=(len(self._bodies_indexes) * 25, 3), dtype=np.float32)
for i, index in enumerate(self._bodies_indexes):
self._joints = self._body_frame.bodies[index].joints
self._dynamic_point_cloud[i*25:(i+1)*25, 0] = [joint.Position.x * 1000 for joint in self._joints[:25]]
self._dynamic_point_cloud[i*25:(i+1)*25, 1] = [joint.Position.z * 1000 for joint in self._joints[:25]]
self._dynamic_point_cloud[i*25:(i+1)*25, 2] = [joint.Position.y * 1000 for joint in self._joints[:25]]
except:
# if no body is tracked then plot zeros
self._dynamic_point_cloud = np.ndarray(shape=(2, 3), dtype=np.float32)
# simultaneously point cloud
if self._simultaneously_point_cloud:
self._skeleton_point_cloud_points = self._dynamic_point_cloud
# for simultaneously point cloud stack the point arrays
if self._simultaneously_point_cloud:
self._simultaneously_point_cloud_points = np.ndarray(shape=(1,3), dtype=np.float32)
if self._color_point_cloud:
self._simultaneously_point_cloud_points = np.vstack((self._simultaneously_point_cloud_points, self._color_point_cloud_points))
if self._depth_point_cloud:
depth_index_start = len(self._simultaneously_point_cloud_points) - 1
self._simultaneously_point_cloud_points = np.vstack((self._simultaneously_point_cloud_points, self._depth_point_cloud_points))
depth_index_end = len(self._simultaneously_point_cloud_points) - 1
if self._body_index_cloud:
body_index_start = len(self._simultaneously_point_cloud_points) - 1
self._simultaneously_point_cloud_points = np.vstack((self._simultaneously_point_cloud_points, self._body_point_cloud_points))
body_index_end = len(self._simultaneously_point_cloud_points) - 1
if self._skeleton_point_cloud:
self._simultaneously_point_cloud_points = np.vstack((self._simultaneously_point_cloud_points, self._skeleton_point_cloud_points))
# remove the first initialized array
self._dynamic_point_cloud = self._simultaneously_point_cloud_points[1:,:]
# update the color and size of the points based on the track bars
self._color = np.zeros((len(self._dynamic_point_cloud), 4), dtype=np.float32)
self._color[:, 0] = self._red / 255
self._color[:, 1] = self._green / 255
self._color[:, 2] = self._blue / 255
self._color[:, 3] = self._opacity / 255 # opacity
# update color from rgb camera for each case
if self._color_overlay:
# update color from rgb camera when using the color img sensor
if self._color_point_cloud:
try:
# get color image
color_img = self._kinect.get_last_color_frame().reshape((self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4)).astype(np.uint8)
color_img = np.divide(color_img, 255) # standardize from 0 to 1
color_img = color_img.reshape((self._kinect.color_frame_desc.Height * self._kinect.color_frame_desc.Width, 4))
color_img = color_img[:, :3:] # remove the fourth opacity channel
color_img = color_img[..., ::-1] # transform from bgr to rgb
# update color with rgb color
self._color[:self._kinect.color_frame_desc.Height*self._kinect.color_frame_desc.Width, 0] = color_img[:, 0]
self._color[:self._kinect.color_frame_desc.Height*self._kinect.color_frame_desc.Width, 1] = color_img[:, 1]
self._color[:self._kinect.color_frame_desc.Height*self._kinect.color_frame_desc.Width, 2] = color_img[:, 2]
except:
# handle exception during simultaneously where body is not yet tracked
pass
# update color for the depth camera point cloud by mapping the rgb frame to the depth frame
if self._depth_point_cloud:
try:
# map color to depth frame
Xs, Ys = mapper.color_2_depth_space(self._kinect, _ColorSpacePoint, self._kinect._depth_frame_data, show=False)
color_img = self._kinect.get_last_color_frame().reshape((self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4)).astype(np.uint8)
# make align rgb/d image
align_color_img = np.zeros((self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width, 4), dtype=np.uint8)
align_color_img[:, :] = color_img[Ys, Xs, :]
align_color_img = align_color_img.reshape((self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 4)).astype(np.uint8)
align_color_img = align_color_img[:, :3:] # remove the fourth opacity channel
align_color_img = align_color_img[..., ::-1] # transform from bgr to rgb
align_color_img = np.divide(align_color_img, 255) # standardize from 0 to 1
# update color with rgb color
if self._simultaneously_point_cloud:
self._color[depth_index_start:depth_index_end, 0] = align_color_img[:, 0]
self._color[depth_index_start:depth_index_end, 1] = align_color_img[:, 1]
self._color[depth_index_start:depth_index_end, 2] = align_color_img[:, 2]
else:
self._color[:self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 0] = align_color_img[:, 0]
self._color[:self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 1] = align_color_img[:, 1]
self._color[:self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 2] = align_color_img[:, 2]
except:
# handle exception during simultaneously where body is not yet tracked
pass
# update color for the body index frame
if self._body_index_cloud:
try:
# if the depth point cloud is enabled remove these calculations
if not self._depth_point_cloud:
# map color to depth frame
Xs, Ys = mapper.color_2_depth_space(self._kinect, _ColorSpacePoint, self._kinect._depth_frame_data, show=False)
color_img = self._kinect.get_last_color_frame().reshape((self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4)).astype(np.uint8)
# make align rgb/d image
align_color_img = np.zeros((self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width, 4), dtype=np.uint8)
align_color_img[:, :] = color_img[Ys, Xs, :]
align_color_img = align_color_img.reshape((self._kinect.depth_frame_desc.Height * self._kinect.depth_frame_desc.Width, 4)).astype(np.uint8)
align_color_img = align_color_img[:, :3:] # remove the fourth opacity channel
align_color_img = align_color_img[..., ::-1] # transform from bgr to rgb
align_color_img = np.divide(align_color_img, 255) # standardize from 0 to 1
# remove zero depth points to match the array sizes as in the depth body index
self._body_index_points = self._body_index_points[depth[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]] != 0]
# update color based on the rgb frame
if self._simultaneously_point_cloud:
self._color[body_index_start:body_index_end, 0] = align_color_img[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 0]
self._color[body_index_start:body_index_end, 1] = align_color_img[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 1]
self._color[body_index_start:body_index_end, 2] = align_color_img[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 2]
else:
self._color[:self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 0] = align_color_img[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 0]
self._color[:self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 1] = align_color_img[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 1]
self._color[:self._kinect.depth_frame_desc.Height*self._kinect.depth_frame_desc.Width, 2] = align_color_img[self._body_index_points[:, 0] * 512 + self._body_index_points[:, 1]][:, 2]
except:
# handle exceptions when no body is tracked
pass
# update the skeleton color and size for simultaneously point cloud
# for better visualization
if self._skeleton_point_cloud and self._simultaneously_point_cloud:
# make skeleton point bigger
self._size = np.zeros(len(self._dynamic_point_cloud), dtype=np.float32)
self._size[:] = cv2.getTrackbarPos("Size", self._configurations) / 10
if len(self._bodies_indexes) > 0:
self._size[-25*len(self._bodies_indexes):] = cv2.getTrackbarPos("SkeletonSize", self._configurations)
# update the skeleton colors for each different skeleton tracked
for i in range(len(self._bodies_indexes)):
if i == 0:
self._color[-25:, 0] = self._skeleton_colors[i, 0]
self._color[-25:, 1] = self._skeleton_colors[i, 1]
self._color[-25:, 2] = self._skeleton_colors[i, 2]
else:
self._color[-25*(i+1):-25*i, 0] = self._skeleton_colors[i, 0]
self._color[-25*(i+1):-25*i, 1] = self._skeleton_colors[i, 1]
self._color[-25*(i+1):-25*i, 2] = self._skeleton_colors[i, 2]
# update the pyqtgraph cloud
self._scatter.setData(pos=self._dynamic_point_cloud, color=self._color, size=self._size)
if self._color_overlay:
self._scatter.setGLOptions('opaque') # enables depth and disables blending
else:
self._scatter.setGLOptions('additive') # disables depth enables blending
def init(self):
"""
Initialize PyQTGraph and add the constructed points
:return None
"""
# check if the pointcloud is dynamically
if not self._dynamic:
self.create_points()
self.load_data() # load points for the first time
self._t = QtCore.QTimer() # initialize the Qui time
self._t.timeout.connect(self.update) # Initialize the update function
self._t.start(10) # import a delay
def visualize(self):
"""
Starting the visualization in pyqtgraph
:return None
"""
# start loop
self._start = True
while self._start:
# check for interactive display and version
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
# check to break loop
if self._start_gui:
break
# start app
QtGui.QApplication.instance().exec_()
self._start_gui = True
else:
self._start = False
self._start = False
cv2.destroyAllWindows() # destroy track bar window and close application
def visualize_file(self):
"""
Handles the .pcd or .ply files visualization with Open3D
:return None
"""
import matplotlib.pyplot as plt
self._w.close() # close pyqtgraph window application
QtGui.QApplication.quit() # close pyqtgraph application
cv2.destroyAllWindows()
# Check if file exists
if os.path.exists(os.path.join(self._dir_path, self._cloud_file)):
vis = o3d.Visualizer() # start visualizer
vis.create_window(width=768, height=432) # init window
# add file geometry
vis.add_geometry(o3d.read_point_cloud(os.path.join(self._dir_path, self._cloud_file)))
opt = vis.get_render_option() # get options
opt.background_color = np.asarray([0, 0, 0]) # background to black
view_control = vis.get_view_control()
view_control.rotate(0, -360)
vis.run() # run visualization
vis.destroy_window() # destroy window after closing the point cloud
sys.exit() # exit the application
else:
# create and save file
self.create_points()
if self._cloud_file[-4:] == '.ply':
self.export_to_ply()
if self._cloud_file[-4:] == '.pcd':
self.export_to_pcd()
vis = o3d.Visualizer() # start visualizer
vis.create_window(width=768, height=432) # init window
# add file geometry
vis.add_geometry(o3d.read_point_cloud(os.path.join(self._dir_path, self._cloud_file)))
opt = vis.get_render_option() # get options
opt.background_color = np.asarray([0, 0, 0]) # background to black
view_control = vis.get_view_control()
view_control.rotate(0, -360)
vis.run() # run visualization
vis.destroy_window() # destroy window after closing the point cloud
sys.exit() # exit the application
def export_to_ply(self):
"""
Inspired by https://github.com/bponsler/kinectToPly
Writes a kinect point cloud into a .ply file
return None
"""
# assert that the points have been created
assert self._dynamic_point_cloud is not None, "Point Cloud has not been initialized"
assert self._cloud_file != "", "Specify text filename"
# stack data
data = np.column_stack((self._dynamic_point_cloud, self._color))
data = data[np.all(data != float('-inf'), axis=1)] # remove -inf
# header format of ply file
header_lines = ["ply",
"format ascii 1.0",
"comment generated by: python",
"element vertex {}".format(int(len(data))),
"property float x",
"property float y",
"property float z",
"property uchar red",
"property uchar green",
"property uchar blue",
"end_header"]
# convert to string
data = '\n'.join('{} {} {} {} {} {}'.format('%.2f' % x[0], '%.2f' % x[1], '%.2f' % x[2], int(x[3]), int(x[4]), int(x[5])) for x in data)
header = '\n'.join(line for line in header_lines) + '\n'
# write file
file = open(os.path.join(self._dir_path, self._cloud_file), 'w')
file.write(header)
file.write(data)
file.close()
def export_to_pcd(self):
# assert that the points have been created
assert self._dynamic_point_cloud is not None, "Point Cloud has not been initialized"
assert self._cloud_file != "", "Specify text filename"
# pack r/g/b to rgb
rgb = np.asarray([[int(int(r_g_b[0]) << 16 | int(r_g_b[1]) << 8 | int(r_g_b[0]))] for r_g_b in self._color])
# stack data
data = np.column_stack((self._dynamic_point_cloud, rgb))
data = data[np.all(data != float('-inf'), axis=1)] # remove -inf
# header format of pcd file
header_lines = ["# .PCD v0.7 - Point Cloud Data file format",
"VERSION 0.7",
"FIELDS x y z rgb",
"SIZE 4 4 4 4",
"TYPE F F F U",
"COUNT 1 1 1 1",
"WIDTH {}".format(int(len(data))),
"HEIGHT 1",
"VIEWPOINT 0 0 0 1 0 0 0",
"POINTS {}".format(int(len(data))),
"DATA ascii"]
# convert to string
data = '\n'.join('{} {} {} {}'.format('%.2f' % x[0], '%.2f' % x[1], '%.2f' % x[2], int(x[3])) for x in data)
header = '\n'.join(line for line in header_lines) + '\n'
# write file
file = open(os.path.join(self._dir_path, self._cloud_file), 'w')
file.write(header)
file.write(data)
file.close()
if __name__ == "__main__":
"""
For viewing a point cloud text file with:
x, y, z
....
x, y, z
(world point coordinates)
If the file with the name does not exists it will create a point cloud with kinect
and save it to that file.txt.
It can also view .pcd and .ply files.
"""
# pcl = Cloud(file='models/test_cloud_6.txt')
# pcl.visualize()
# pcd or ply files open with the Open3D library
# pcl = Cloud(file='models/model.pcd')
# pcl = Cloud(file='models/Car.ply')
"""
If the files doesn't exist then you have to specify from which sensor camera you want
the pointcloud to be created and saved with that file name.
"""
""" TXT files """
# pcl = Cloud(file='models/test_cloud_7.txt', depth=True)
# pcl.visualize()
# pcl = Cloud(file='models/test_cloud_8.txt', color=True)
# pcl.visualize()
""" PLY files creation """
# pcl = Cloud(file='models/test_cloud_10.ply', depth=True)
# pcl = Cloud(file='models/test_cloud_10.ply', color=True)
""" PCD files creation """
# pcl = Cloud(file='models/test_cloud_10.pcd', depth=True)
# pcl = Cloud(file='models/test_cloud_10.pcd', color=True)
"""
For dynamically creating the PointCloud and viewing the PointCloud.
"""
# rgb camera
# pcl = Cloud(dynamic=True, color=True, color_overlay=False)
# pcl.visualize()
# depth camera
# pcl = Cloud(dynamic=True, depth=True, color_overlay=True)
# pcl.visualize()
# body index
# pcl = Cloud(dynamic=True, body=True, color_overlay=True)
# pcl.visualize()
# skeleton cloud
# pcl = Cloud(dynamic=True, skeleton=True, color_overlay=False)
# pcl.visualize()
"""
# You can also visualize the clouds simultaneously in any order, and apply the rgb frame color on top of them.s
"""
# pcl = Cloud(dynamic=True, simultaneously=True, color=True, depth=True, body=False, skeleton=False, color_overlay=True)
# pcl.visualize()
# pcl = Cloud(dynamic=True, simultaneously=True, depth=True, color=True, body=True, skeleton=True, color_overlay=False)
# pcl.visualize()
# pcl = Cloud(dynamic=True, simultaneously=True, depth=True, color=False, body=True, skeleton=False, color_overlay=False)
# pcl.visualize()
pcl = Cloud(dynamic=True, simultaneously=True, depth=True, color=False, body=False, skeleton=True, color_overlay=True)
pcl.visualize()