-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtime_series.py
47 lines (39 loc) · 1.5 KB
/
time_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd
class TimeSeries:
"""
This a class for time series related operation on a TimeSeries dataset.
Attributes
----------
data : pandas DataFrame
Raw data.
train : pandas DataFrame
Data to be used for training the model.
test : pandas DataFrame
Data used for test phase.
"""
def __init__(self,filename,train_size=0.7):
"""
The constructor for TimeSeries class. It loads and splits the dataset as per the given ratio.
Generally the dataset for time series is of the format:
date values
yyyy-mm-dd x
params
------
train_size: float
Value used to split the dataset into train and test data.
"""
self.data = pd.read_csv(filename)
self.data.rename(columns={1:'date',2:'values'})
self.data['date'] = pd.to_datetime(self.data['date'])
# set index and modify inplace without creating new object
self.data.set_index(self.data['date'],inplace=True)
if train_size>1 or train_size<0:
raise Exception("Invalid train_size, should be a float between 0.0 and 1.0")
no_of_rows_in_dataset = self.data.shape[0]
split_index = int(no_of_rows_in_dataset*train_size)
self.train = self.data.iloc[:split_index,1]
self.test = self.data.iloc[split_index-1:,1]
def set_scale(self,factor=1):
"""Scales values in the time series"""
self.train/=factor
self.test/=factor