forked from python/cpython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README
1267 lines (976 loc) · 54 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
This is Python version 2.7.18
=============================
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Python Software Foundation. All
rights reserved.
Copyright (c) 2000 BeOpen.com.
All rights reserved.
Copyright (c) 1995-2001 Corporation for National Research Initiatives.
All rights reserved.
Copyright (c) 1991-1995 Stichting Mathematisch Centrum.
All rights reserved.
License information
-------------------
See the file "LICENSE" for information on the history of this
software, terms & conditions for usage, and a DISCLAIMER OF ALL
WARRANTIES.
This Python distribution contains no GNU General Public Licensed
(GPLed) code so it may be used in proprietary projects just like prior
Python distributions. There are interfaces to some GNU code but these
are entirely optional.
All trademarks referenced herein are property of their respective
holders.
What's new in this release?
---------------------------
See the file "Misc/NEWS".
If you don't read instructions
------------------------------
Congratulations on getting this far. :-)
To start building right away (on UNIX): type "./configure" in the
current directory and when it finishes, type "make". This creates an
executable "./python"; to install in /usr/local, first do "su root"
and then "make install".
The section `Build instructions' below is still recommended reading.
What is Python anyway?
----------------------
Python is an interpreted, interactive object-oriented programming
language suitable (amongst other uses) for distributed application
development, scripting, numeric computing and system testing. Python
is often compared to Tcl, Perl, Java, JavaScript, Visual Basic or
Scheme. To find out more about what Python can do for you, point your
browser to http://www.python.org/.
How do I learn Python?
----------------------
The official tutorial is still a good place to start; see
http://docs.python.org/ for online and downloadable versions, as well
as a list of other introductions, and reference documentation.
There's a quickly growing set of books on Python. See
http://wiki.python.org/moin/PythonBooks for a list.
Documentation
-------------
All documentation is provided online in a variety of formats. In
order of importance for new users: Tutorial, Library Reference,
Language Reference, Extending & Embedding, and the Python/C API. The
Library Reference is especially of immense value since much of
Python's power is described there, including the built-in data types
and functions!
All documentation is also available online at the Python web site
(http://docs.python.org/, see below). It is available online for occasional
reference, or can be downloaded in many formats for faster access. The
documentation is downloadable in HTML, PostScript, PDF, LaTeX, and
reStructuredText (2.6+) formats; the LaTeX and reStructuredText versions are
primarily for documentation authors, translators, and people with special
formatting requirements.
If you would like to contribute to the development of Python, relevant
documentation is available at:
http://docs.python.org/devguide/
For information about building Python's documentation, refer to Doc/README.txt.
Web sites
---------
New Python releases and related technologies are published at
http://www.python.org/. Come visit us!
Newsgroups and Mailing Lists
----------------------------
Read comp.lang.python, a high-volume discussion newsgroup about
Python, or comp.lang.python.announce, a low-volume moderated newsgroup
for Python-related announcements. These are also accessible as
mailing lists: see http://www.python.org/community/lists/ for an
overview of these and many other Python-related mailing lists.
Archives are accessible via the Google Groups Usenet archive; see
http://groups.google.com/. The mailing lists are also archived, see
http://www.python.org/community/lists/ for details.
Bug reports
-----------
To report or search for bugs, please use the Python Bug
Tracker at http://bugs.python.org/.
Patches and contributions
-------------------------
To submit a patch or other contribution, please use the Python Patch
Manager at http://bugs.python.org/. Guidelines
for patch submission may be found at http://www.python.org/dev/patches/.
If you have a proposal to change Python, you may want to send an email to the
comp.lang.python or python-ideas mailing lists for inital feedback. A Python
Enhancement Proposal (PEP) may be submitted if your idea gains ground. All
current PEPs, as well as guidelines for submitting a new PEP, are listed at
http://www.python.org/dev/peps/.
Questions
---------
For help, if you can't find it in the manuals or on the web site, it's
best to post to the comp.lang.python or the Python mailing list (see
above). If you specifically don't want to involve the newsgroup or
mailing list, send questions to help@python.org (a group of volunteers
who answer questions as they can). The newsgroup is the most
efficient way to ask public questions.
Build instructions
==================
Before you can build Python, you must first configure it.
Fortunately, the configuration and build process has been automated
for Unix and Linux installations, so all you usually have to do is
type a few commands and sit back. There are some platforms where
things are not quite as smooth; see the platform specific notes below.
If you want to build for multiple platforms sharing the same source
tree, see the section on VPATH below.
Start by running the script "./configure", which determines your
system configuration and creates the Makefile. (It takes a minute or
two -- please be patient!) You may want to pass options to the
configure script -- see the section below on configuration options and
variables. When it's done, you are ready to run make.
To build Python, you normally type "make" in the toplevel directory.
If you have changed the configuration, the Makefile may have to be
rebuilt. In this case, you may have to run make again to correctly
build your desired target. The interpreter executable is built in the
top level directory.
To get an optimized build of Python, "configure --enable-optimizations" before
you run make. This sets the default make targets up to enable Profile Guided
Optimization (PGO) and may be used to auto-enable Link Time Optimization (LTO)
on some platforms. For more details, see the sections bellow.
Once you have built a Python interpreter, see the subsections below on
testing and installation. If you run into trouble, see the next
section.
Previous versions of Python used a manual configuration process that
involved editing the file Modules/Setup. While this file still exists
and manual configuration is still supported, it is rarely needed any
more: almost all modules are automatically built as appropriate under
guidance of the setup.py script, which is run by Make after the
interpreter has been built.
Profile Guided Optimization
---------------------------
PGO takes advantage of recent versions of the GCC or Clang compilers.
If ran, "make profile-opt" will do several steps.
First, the entire Python directory is cleaned of temporary files that
may have resulted in a previous compilation.
Then, an instrumented version of the interpreter is built, using suitable
compiler flags for each flavour. Note that this is just an intermediary
step and the binary resulted after this step is not good for real life
workloads, as it has profiling instructions embedded inside.
After this instrumented version of the interpreter is built, the Makefile
will automatically run a training workload. This is necessary in order to
profile the interpreter execution. Note also that any output, both stdout
and stderr, that may appear at this step is suppressed.
Finally, the last step is to rebuild the interpreter, using the information
collected in the previous one. The end result will be a Python binary
that is optimized and suitable for distribution or production installation.
Link Time Optimization
----------------------
Enabled via configure's --with-lto flag. LTO takes advantages of recent
compiler toolchains ability to optimize across the otherwise arbitrary .o file
boundary when building final executables or shared libraries for additional
performance gains.
Troubleshooting
---------------
See also the platform specific notes in the next section.
If you run into other trouble, see the FAQ
(http://www.python.org/doc/faq/) for hints on what can go wrong, and
how to fix it.
If you rerun the configure script with different options, remove all
object files by running "make clean" before rebuilding. Believe it or
not, "make clean" sometimes helps to clean up other inexplicable
problems as well. Try it before sending in a bug report!
If the configure script fails or doesn't seem to find things that
should be there, inspect the config.log file.
If you get a warning for every file about the -Olimit option being no
longer supported, you can ignore it. There's no foolproof way to know
whether this option is needed; all we can do is test whether it is
accepted without error. On some systems, e.g. older SGI compilers, it
is essential for performance (specifically when compiling ceval.c,
which has more basic blocks than the default limit of 1000). If the
warning bothers you, edit the Makefile to remove "-Olimit 1500" from
the OPT variable.
If you get failures in test_long, or sys.maxint gets set to -1, you
are probably experiencing compiler bugs, usually related to
optimization. This is a common problem with some versions of gcc, and
some vendor-supplied compilers, which can sometimes be worked around
by turning off optimization. Consider switching to stable versions
(gcc 2.95.2, gcc 3.x, or contact your vendor.)
From Python 2.0 onward, all Python C code is ANSI C. Compiling using
old K&R-C-only compilers is no longer possible. ANSI C compilers are
available for all modern systems, either in the form of updated
compilers from the vendor, or one of the free compilers (gcc).
If "make install" fails mysteriously during the "compiling the library"
step, make sure that you don't have any of the PYTHONPATH or PYTHONHOME
environment variables set, as they may interfere with the newly built
executable which is compiling the library.
Unsupported systems
-------------------
A number of systems are not supported in Python 2.7 anymore. Some
support code is still present, but will be removed in later versions.
If you still need to use current Python versions on these systems,
please send a message to python-dev@python.org indicating that you
volunteer to support this system. For a more detailed discussion
regarding no-longer-supported and resupporting platforms, as well
as a list of platforms that became or will be unsupported, see PEP 11.
More specifically, the following systems are not supported any
longer:
- SunOS 4
- DYNIX
- dgux
- Minix
- NeXT
- Irix 4 and --with-sgi-dl
- Linux 1
- Systems defining __d6_pthread_create (configure.ac)
- Systems defining PY_PTHREAD_D4, PY_PTHREAD_D6,
or PY_PTHREAD_D7 in thread_pthread.h
- Systems using --with-dl-dld
- Systems using --without-universal-newlines
- MacOS 9
- Systems using --with-wctype-functions
- Win9x, WinME
Platform specific notes
-----------------------
(Some of these may no longer apply. If you find you can build Python
on these platforms without the special directions mentioned here,
submit a documentation bug report to SourceForge (see Bug Reports
above) so we can remove them!)
Unix platforms: If your vendor still ships (and you still use) Berkeley DB
1.85 you will need to edit Modules/Setup to build the bsddb185
module and add a line to sitecustomize.py which makes it the
default. In Modules/Setup a line like
bsddb185 bsddbmodule.c
should work. (You may need to add -I, -L or -l flags to direct the
compiler and linker to your include files and libraries.)
XXX I think this next bit is out of date:
64-bit platforms: The modules audioop, and imageop don't work.
The setup.py script disables them on 64-bit installations.
Don't try to enable them in the Modules/Setup file. They
contain code that is quite wordsize sensitive. (If you have a
fix, let us know!)
Solaris: When using Sun's C compiler with threads, at least on Solaris
2.5.1, you need to add the "-mt" compiler option (the simplest
way is probably to specify the compiler with this option as
the "CC" environment variable when running the configure
script).
When using GCC on Solaris, beware of binutils 2.13 or GCC
versions built using it. This mistakenly enables the
-zcombreloc option which creates broken shared libraries on
Solaris. binutils 2.12 works, and the binutils maintainers
are aware of the problem. Binutils 2.13.1 only partially
fixed things. It appears that 2.13.2 solves the problem
completely. This problem is known to occur with Solaris 2.7
and 2.8, but may also affect earlier and later versions of the
OS.
When the dynamic loader complains about errors finding shared
libraries, such as
ld.so.1: ./python: fatal: libstdc++.so.5: open failed:
No such file or directory
you need to first make sure that the library is available on
your system. Then, you need to instruct the dynamic loader how
to find it. You can choose any of the following strategies:
1. When compiling Python, set LD_RUN_PATH to the directories
containing missing libraries.
2. When running Python, set LD_LIBRARY_PATH to these directories.
3. Use crle(8) to extend the search path of the loader.
4. Modify the installed GCC specs file, adding -R options into the
*link: section.
The complex object fails to compile on Solaris 10 with gcc 3.4 (at
least up to 3.4.3). To work around it, define Py_HUGE_VAL as
HUGE_VAL(), e.g.:
make CPPFLAGS='-D"Py_HUGE_VAL=HUGE_VAL()" -I. -I$(srcdir)/Include'
./python setup.py CPPFLAGS='-D"Py_HUGE_VAL=HUGE_VAL()"'
Linux: A problem with threads and fork() was tracked down to a bug in
the pthreads code in glibc version 2.0.5; glibc version 2.0.7
solves the problem. This causes the popen2 test to fail;
problem and solution reported by Pablo Bleyer.
Red Hat Linux: Red Hat 9 built Python2.2 in UCS-4 mode and hacked
Tcl to support it. To compile Python2.3 with Tkinter, you will
need to pass --enable-unicode=ucs4 flag to ./configure.
There's an executable /usr/bin/python which is Python
1.5.2 on most older Red Hat installations; several key Red Hat tools
require this version. Python 2.1.x may be installed as
/usr/bin/python2. The Makefile installs Python as
/usr/local/bin/python, which may or may not take precedence
over /usr/bin/python, depending on how you have set up $PATH.
FreeBSD 3.x and probably platforms with NCurses that use libmytinfo or
similar: When using cursesmodule, the linking is not done in
the correct order with the defaults. Remove "-ltermcap" from
the readline entry in Setup, and use as curses entry: "curses
cursesmodule.c -lmytinfo -lncurses -ltermcap" - "mytinfo" (so
called on FreeBSD) should be the name of the auxiliary library
required on your platform. Normally, it would be linked
automatically, but not necessarily in the correct order.
BSDI: BSDI versions before 4.1 have known problems with threads,
which can cause strange errors in a number of modules (for
instance, the 'test_signal' test script will hang forever.)
Turning off threads (with --with-threads=no) or upgrading to
BSDI 4.1 solves this problem.
DEC Unix: Run configure with --with-dec-threads, or with
--with-threads=no if no threads are desired (threads are on by
default). When using GCC, it is possible to get an internal
compiler error if optimization is used. This was reported for
GCC 2.7.2.3 on selectmodule.c. Manually compile the affected
file without optimization to solve the problem.
DEC Ultrix: compile with GCC to avoid bugs in the native compiler,
and pass SHELL=/bin/sh5 to Make when installing.
AIX: A complete overhaul of the shared library support is now in
place. See Misc/AIX-NOTES for some notes on how it's done.
(The optimizer bug reported at this place in previous releases
has been worked around by a minimal code change.) If you get
errors about pthread_* functions, during compile or during
testing, try setting CC to a thread-safe (reentrant) compiler,
like "cc_r". For full C++ module support, set CC="xlC_r" (or
CC="xlC" without thread support).
AIX 5.3: To build a 64-bit version with IBM's compiler, I used the
following:
export PATH=/usr/bin:/usr/vacpp/bin
./configure --with-gcc="xlc_r -q64" --with-cxx="xlC_r -q64" \
--disable-ipv6 AR="ar -X64"
make
HP-UX: When using threading, you may have to add -D_REENTRANT to the
OPT variable in the top-level Makefile; reported by Pat Knight,
this seems to make a difference (at least for HP-UX 10.20)
even though pyconfig.h defines it. This seems unnecessary when
using HP/UX 11 and later - threading seems to work "out of the
box".
HP-UX ia64: When building on the ia64 (Itanium) platform using HP's
compiler, some experience has shown that the compiler's
optimiser produces a completely broken version of python
(see http://bugs.python.org/814976). To work around this,
edit the Makefile and remove -O from the OPT line.
To build a 64-bit executable on an Itanium 2 system using HP's
compiler, use these environment variables:
CC=cc
CXX=aCC
BASECFLAGS="+DD64"
LDFLAGS="+DD64 -lxnet"
and call configure as:
./configure --without-gcc
then *unset* the environment variables again before running
make. (At least one of these flags causes the build to fail
if it remains set.) You still have to edit the Makefile and
remove -O from the OPT line.
HP PA-RISC 2.0: A recent bug report (http://bugs.python.org/546117)
suggests that the C compiler in this 64-bit system has bugs
in the optimizer that break Python. Compiling without
optimization solves the problems.
SCO: The following apply to SCO 3 only; Python builds out of the box
on SCO 5 (or so we've heard).
1) Everything works much better if you add -U__STDC__ to the
defs. This is because all the SCO header files are broken.
Anything that isn't mentioned in the C standard is
conditionally excluded when __STDC__ is defined.
2) Due to the U.S. export restrictions, SCO broke the crypt
stuff out into a separate library, libcrypt_i.a so the LIBS
needed be set to:
LIBS=' -lsocket -lcrypt_i'
UnixWare: There are known bugs in the math library of the system, as well as
problems in the handling of threads (calling fork in one
thread may interrupt system calls in others). Therefore, test_math and
tests involving threads will fail until those problems are fixed.
QNX: Chris Herborth (chrish@qnx.com) writes:
configure works best if you use GNU bash; a port is available on
ftp.qnx.com in /usr/free. I used the following process to build,
test and install Python 1.5.x under QNX:
1) CONFIG_SHELL=/usr/local/bin/bash CC=cc RANLIB=: \
./configure --verbose --without-gcc --with-libm=""
2) edit Modules/Setup to activate everything that makes sense for
your system... tested here at QNX with the following modules:
array, audioop, binascii, cPickle, cStringIO, cmath,
crypt, curses, errno, fcntl, gdbm, grp, imageop,
_locale, math, md5, new, operator, parser, pcre,
posix, pwd, readline, regex, reop,
select, signal, socket, soundex, strop, struct,
syslog, termios, time, timing, zlib, audioop, imageop
3) make SHELL=/usr/local/bin/bash
or, if you feel the need for speed:
make SHELL=/usr/local/bin/bash OPT="-5 -Oil+nrt"
4) make SHELL=/usr/local/bin/bash test
Using GNU readline 2.2 seems to behave strangely, but I
think that's a problem with my readline 2.2 port. :-\
5) make SHELL=/usr/local/bin/bash install
If you get SIGSEGVs while running Python (I haven't yet, but
I've only run small programs and the test cases), you're
probably running out of stack; the default 32k could be a
little tight. To increase the stack size, edit the Makefile
to read: LDFLAGS = -N 48k
BeOS: See Misc/BeOS-NOTES for notes about compiling/installing
Python on BeOS R3 or later. Note that only the PowerPC
platform is supported for R3; both PowerPC and x86 are
supported for R4.
Cray T3E: Mark Hadfield (m.hadfield@niwa.co.nz) writes:
Python can be built satisfactorily on a Cray T3E but based on
my experience with the NIWA T3E (2002-05-22, version 2.2.1)
there are a few bugs and gotchas. For more information see a
thread on comp.lang.python in May 2002 entitled "Building
Python on Cray T3E".
1) Use Cray's cc and not gcc. The latter was reported not to
work by Konrad Hinsen. It may work now, but it may not.
2) To set sys.platform to something sensible, pass the
following environment variable to the configure script:
MACHDEP=unicosmk
2) Run configure with option "--enable-unicode=ucs4".
3) The Cray T3E does not support dynamic linking, so extension
modules have to be built by adding (or uncommenting) lines
in Modules/Setup. The minimum set of modules is
posix, new, _sre, unicodedata
On NIWA's vanilla T3E system the following have also been
included successfully:
_codecs, _locale, _socket, _symtable, _testcapi, _weakref
array, binascii, cmath, cPickle, crypt, cStringIO, dbm
errno, fcntl, grp, math, md5, operator, parser, pcre, pwd
regex, rotor, select, struct, strop, syslog, termios
time, timing, xreadlines
4) Once the python executable and library have been built, make
will execute setup.py, which will attempt to build remaining
extensions and link them dynamically. Each of these attempts
will fail but should not halt the make process. This is
normal.
5) Running "make test" uses a lot of resources and causes
problems on our system. You might want to try running tests
singly or in small groups.
SGI: SGI's standard "make" utility (/bin/make or /usr/bin/make)
does not check whether a command actually changed the file it
is supposed to build. This means that whenever you say "make"
it will redo the link step. The remedy is to use SGI's much
smarter "smake" utility (/usr/sbin/smake), or GNU make. If
you set the first line of the Makefile to #!/usr/sbin/smake
smake will be invoked by make (likewise for GNU make).
WARNING: There are bugs in the optimizer of some versions of
SGI's compilers that can cause bus errors or other strange
behavior, especially on numerical operations. To avoid this,
try building with "make OPT=".
OS/2: If you are running Warp3 or Warp4 and have IBM's VisualAge C/C++
compiler installed, just change into the pc\os2vacpp directory
and type NMAKE. Threading and sockets are supported by default
in the resulting binaries of PYTHON15.DLL and PYTHON.EXE.
Reliant UNIX: The thread support does not compile on Reliant UNIX, and
there is a (minor) problem in the configure script for that
platform as well. This should be resolved in time for a
future release.
macOS: Building a complete Python installation requires the use of various
additional third-party libraries, depending on your build platform and
configure options. Not all standard library modules are buildable or
useable on all platforms. Refer to the "Install Dependencies" section
section of the "Developer Guide" for current detailed information on
dependencies for macOS:
https://devguide.python.org/setup/#install-dependencies
On macOS, there are additional configure and build options related
to macOS framework and universal builds. Refer to Mac/README.rst.
The tests will crash on both 10.1 and 10.2 with SEGV in
test_re and test_sre due to the small default stack size. If
you set the stack size to 2048 before doing a "make test" the
failure can be avoided. If you're using the tcsh or csh shells,
use "limit stacksize 2048" and for the bash shell (the default
as of macOS 10.3), use "ulimit -s 2048".
On naked Darwin you may want to add the configure option
"--disable-toolbox-glue" to disable the glue code for the Carbon
interface modules. The modules themselves are currently only built
if you add the --enable-framework option, see below.
On a clean macOS /usr/local does not exist. Do a
"sudo mkdir -m 775 /usr/local"
before you do a make install. It is probably not a good idea to
do "sudo make install" which installs everything as superuser,
as this may later cause problems when installing distutils-based
additions.
Some people have reported problems building Python after using "fink"
to install additional unix software. Disabling fink (remove all
references to /sw from your .profile or .login) should solve this.
Cygwin: With recent (relative to the time of writing, 2001-12-19)
Cygwin installations, there are problems with the interaction
of dynamic linking and fork(). This manifests itself in build
failures during the execution of setup.py.
There are two workarounds that both enable Python (albeit
without threading support) to build and pass all tests on
NT/2000 (and most likely XP as well, though reports of testing
on XP would be appreciated).
The workarounds:
(a) the band-aid fix is to link the _socket module statically
rather than dynamically (which is the default).
To do this, run "./configure --with-threads=no" including any
other options you need (--prefix, etc.). Then in Modules/Setup
uncomment the lines:
#SSL=/usr/local/ssl
#_socket socketmodule.c \
# -DUSE_SSL -I$(SSL)/include -I$(SSL)/include/openssl \
# -L$(SSL)/lib -lssl -lcrypto
and remove "local/" from the SSL variable. Finally, just run
"make"!
(b) The "proper" fix is to rebase the Cygwin DLLs to prevent
base address conflicts. Details on how to do this can be
found in the following mail:
http://sources.redhat.com/ml/cygwin/2001-12/msg00894.html
It is hoped that a version of this solution will be
incorporated into the Cygwin distribution fairly soon.
Two additional problems:
(1) Threading support should still be disabled due to a known
bug in Cygwin pthreads that causes test_threadedtempfile to
hang.
(2) The _curses module does not build. This is a known
Cygwin ncurses problem that should be resolved the next time
that this package is released.
On older versions of Cygwin, test_poll may hang and test_strftime
may fail.
The situation on 9X/Me is not accurately known at present.
Some time ago, there were reports that the following
regression tests failed:
test_pwd
test_select (hang)
test_socket
Due to the test_select hang on 9X/Me, one should run the
regression test using the following:
make TESTOPTS='-l -x test_select' test
News regarding these platforms with more recent Cygwin
versions would be appreciated!
Windows: When executing Python scripts on the command line using file type
associations (i.e. starting "script.py" instead of "python script.py"),
redirects may not work unless you set a specific registry key. See
the Knowledge Base article <http://support.microsoft.com/kb/321788>.
Configuring the bsddb and dbm modules
-------------------------------------
Beginning with Python version 2.3, the PyBsddb package
<http://pybsddb.sf.net/> was adopted into Python as the bsddb package,
exposing a set of package-level functions which provide
backwards-compatible behavior. Only versions 3.3 through 4.4 of
Sleepycat's libraries provide the necessary API, so older versions
aren't supported through this interface. The old bsddb module has
been retained as bsddb185, though it is not built by default. Users
wishing to use it will have to tweak Modules/Setup to build it. The
dbm module will still be built against the Sleepycat libraries if
other preferred alternatives (ndbm, gdbm) are not found.
Building the sqlite3 module
---------------------------
To build the sqlite3 module, you'll need the sqlite3 or libsqlite3
packages installed, including the header files. Many modern operating
systems distribute the headers in a separate package to the library -
often it will be the same name as the main package, but with a -dev or
-devel suffix.
The version of pysqlite2 that's including in Python needs sqlite3 3.0.8
or later. setup.py attempts to check that it can find a correct version.
Configuring threads
-------------------
As of Python 2.0, threads are enabled by default. If you wish to
compile without threads, or if your thread support is broken, pass the
--with-threads=no switch to configure. Unfortunately, on some
platforms, additional compiler and/or linker options are required for
threads to work properly. Below is a table of those options,
collected by Bill Janssen. We would love to automate this process
more, but the information below is not enough to write a patch for the
configure.ac file, so manual intervention is required. If you patch
the configure.ac file and are confident that the patch works, please
send in the patch. (Don't bother patching the configure script itself
-- it is regenerated each time the configure.ac file changes.)
Compiler switches for threads
.............................
The definition of _REENTRANT should be configured automatically, if
that does not work on your system, or if _REENTRANT is defined
incorrectly, please report that as a bug.
OS/Compiler/threads Switches for use with threads
(POSIX is draft 10, DCE is draft 4) compile & link
SunOS 5.{1-5}/{gcc,SunPro cc}/solaris -mt
SunOS 5.5/{gcc,SunPro cc}/POSIX (nothing)
DEC OSF/1 3.x/cc/DCE -threads
(butenhof@zko.dec.com)
Digital UNIX 4.x/cc/DCE -threads
(butenhof@zko.dec.com)
Digital UNIX 4.x/cc/POSIX -pthread
(butenhof@zko.dec.com)
AIX 4.1.4/cc_r/d7 (nothing)
(buhrt@iquest.net)
AIX 4.1.4/cc_r4/DCE (nothing)
(buhrt@iquest.net)
IRIX 6.2/cc/POSIX (nothing)
(robertl@cwi.nl)
Linker (ld) libraries and flags for threads
...........................................
OS/threads Libraries/switches for use with threads
SunOS 5.{1-5}/solaris -lthread
SunOS 5.5/POSIX -lpthread
DEC OSF/1 3.x/DCE -lpthreads -lmach -lc_r -lc
(butenhof@zko.dec.com)
Digital UNIX 4.x/DCE -lpthreads -lpthread -lmach -lexc -lc
(butenhof@zko.dec.com)
Digital UNIX 4.x/POSIX -lpthread -lmach -lexc -lc
(butenhof@zko.dec.com)
AIX 4.1.4/{draft7,DCE} (nothing)
(buhrt@iquest.net)
IRIX 6.2/POSIX -lpthread
(jph@emilia.engr.sgi.com)
Building a shared libpython
---------------------------
Starting with Python 2.3, the majority of the interpreter can be built
into a shared library, which can then be used by the interpreter
executable, and by applications embedding Python. To enable this feature,
configure with --enable-shared.
If you enable this feature, the same object files will be used to create
a static library. In particular, the static library will contain object
files using position-independent code (PIC) on platforms where PIC flags
are needed for the shared library.
Configuring additional built-in modules
---------------------------------------
Starting with Python 2.1, the setup.py script at the top of the source
distribution attempts to detect which modules can be built and
automatically compiles them. Autodetection doesn't always work, so
you can still customize the configuration by editing the Modules/Setup
file; but this should be considered a last resort. The rest of this
section only applies if you decide to edit the Modules/Setup file.
You also need this to enable static linking of certain modules (which
is needed to enable profiling on some systems).
This file is initially copied from Setup.dist by the configure script;
if it does not exist yet, create it by copying Modules/Setup.dist
yourself (configure will never overwrite it). Never edit Setup.dist
-- always edit Setup or Setup.local (see below). Read the comments in
the file for information on what kind of edits are allowed. When you
have edited Setup in the Modules directory, the interpreter will
automatically be rebuilt the next time you run make (in the toplevel
directory).
Many useful modules can be built on any Unix system, but some optional
modules can't be reliably autodetected. Often the quickest way to
determine whether a particular module works or not is to see if it
will build: enable it in Setup, then if you get compilation or link
errors, disable it -- you're either missing support or need to adjust
the compilation and linking parameters for that module.
On SGI IRIX, there are modules that interface to many SGI specific
system libraries, e.g. the GL library and the audio hardware. These
modules will not be built by the setup.py script.
In addition to the file Setup, you can also edit the file Setup.local.
(the makesetup script processes both). You may find it more
convenient to edit Setup.local and leave Setup alone. Then, when
installing a new Python version, you can copy your old Setup.local
file.
Setting the optimization/debugging options
------------------------------------------
If you want or need to change the optimization/debugging options for
the C compiler, assign to the OPT variable on the toplevel make
command; e.g. "make OPT=-g" will build a debugging version of Python
on most platforms. The default is OPT=-O; a value for OPT in the
environment when the configure script is run overrides this default
(likewise for CC; and the initial value for LIBS is used as the base
set of libraries to link with).
When compiling with GCC, the default value of OPT will also include
the -Wall and -Wstrict-prototypes options.
Additional debugging code to help debug memory management problems can
be enabled by using the --with-pydebug option to the configure script.
For flags that change binary compatibility, use the EXTRA_CFLAGS
variable.
Profiling
---------
If you want C profiling turned on, the easiest way is to run configure
with the CC environment variable to the necessary compiler
invocation. For example, on Linux, this works for profiling using
gprof(1):
CC="gcc -pg" ./configure
Note that on Linux, gprof apparently does not work for shared
libraries. The Makefile/Setup mechanism can be used to compile and
link most extension modules statically.
Coverage checking
-----------------
For C coverage checking using gcov, run "make coverage". This will
build a Python binary with profiling activated, and a ".gcno" and
".gcda" file for every source file compiled with that option. With
the built binary, now run the code whose coverage you want to check.
Then, you can see coverage statistics for each individual source file
by running gcov, e.g.
gcov -o Modules zlibmodule
This will create a "zlibmodule.c.gcov" file in the current directory
containing coverage info for that source file.
This works only for source files statically compiled into the
executable; use the Makefile/Setup mechanism to compile and link
extension modules you want to coverage-check statically.
Testing
-------
To test the interpreter, type "make test" in the top-level directory.
This runs the test set twice (once with no compiled files, once with
the compiled files left by the previous test run). The test set
produces some output. You can generally ignore the messages about
skipped tests due to optional features which can't be imported.
If a message is printed about a failed test or a traceback or core
dump is produced, something is wrong. On some Linux systems (those
that are not yet using glibc 6), test_strftime fails due to a
non-standard implementation of strftime() in the C library. Please
ignore this, or upgrade to glibc version 6.
By default, tests are prevented from overusing resources like disk space and
memory. To enable these tests, run "make testall".
IMPORTANT: If the tests fail and you decide to mail a bug report,
*don't* include the output of "make test". It is useless. Run the
failing test manually, as follows:
./python Lib/test/regrtest.py -v test_whatever
(substituting the top of the source tree for '.' if you built in a
different directory). This runs the test in verbose mode.
Installing
----------
To install the Python binary, library modules, shared library modules
(see below), include files, configuration files, and the manual page,
just type
make install
This will install all platform-independent files in subdirectories of
the directory given with the --prefix option to configure or to the
`prefix' Make variable (default /usr/local). All binary and other
platform-specific files will be installed in subdirectories if the
directory given by --exec-prefix or the `exec_prefix' Make variable
(defaults to the --prefix directory) is given.
If DESTDIR is set, it will be taken as the root directory of the
installation, and files will be installed into $(DESTDIR)$(prefix),
$(DESTDIR)$(exec_prefix), etc.
All subdirectories created will have Python's version number in their
name, e.g. the library modules are installed in
"/usr/local/lib/python<version>/" by default, where <version> is the
<major>.<minor> release number (e.g. "2.1"). The Python binary is
installed as "python<version>" and a hard link named "python" is
created. The only file not installed with a version number in its
name is the manual page, installed as "/usr/local/man/man1/python.1"
by default.
If you want to install multiple versions of Python see the section below
entitled "Installing multiple versions".
The only thing you may have to install manually is the Python mode for
Emacs found in Misc/python-mode.el. (But then again, more recent
versions of Emacs may already have it.) Follow the instructions that
came with Emacs for installation of site-specific files.
Installing multiple versions
----------------------------
On Unix and Mac systems if you intend to install multiple versions of Python
using the same installation prefix (--prefix argument to the configure
script) you must take care that your primary python executable is not
overwritten by the installation of a different version. All files and
directories installed using "make altinstall" contain the major and minor
version and can thus live side-by-side. "make install" also creates
${prefix}/bin/python which refers to ${prefix}/bin/pythonX.Y. If you intend
to install multiple versions using the same prefix you must decide which
version (if any) is your "primary" version. Install that version using
"make install". Install all other versions using "make altinstall".
For example, if you want to install Python 2.5, 2.6 and 3.0 with 2.6 being
the primary version, you would execute "make install" in your 2.6 build
directory and "make altinstall" in the others.
Configuration options and variables
-----------------------------------
Some special cases are handled by passing options to the configure
script.
WARNING: if you rerun the configure script with different options, you
must run "make clean" before rebuilding. Exceptions to this rule:
after changing --prefix or --exec-prefix, all you need to do is remove
Modules/getpath.o.
--with(out)-gcc: The configure script uses gcc (the GNU C compiler) if
it finds it. If you don't want this, or if this compiler is
installed but broken on your platform, pass the option
--without-gcc. You can also pass "CC=cc" (or whatever the
name of the proper C compiler is) in the environment, but the
advantage of using --without-gcc is that this option is
remembered by the config.status script for its --recheck
option.
--prefix, --exec-prefix: If you want to install the binaries and the
Python library somewhere else than in /usr/local/{bin,lib},
you can pass the option --prefix=DIRECTORY; the interpreter
binary will be installed as DIRECTORY/bin/python and the
library files as DIRECTORY/lib/python/*. If you pass
--exec-prefix=DIRECTORY (as well) this overrides the
installation prefix for architecture-dependent files (like the
interpreter binary). Note that --prefix=DIRECTORY also
affects the default module search path (sys.path), when
Modules/config.c is compiled. Passing make the option
prefix=DIRECTORY (and/or exec_prefix=DIRECTORY) overrides the
prefix set at configuration time; this may be more convenient