-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_training_L1.py
176 lines (126 loc) · 5.32 KB
/
main_training_L1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Created on Fri Sep 17 10:10:37 2021
@author: Rodrigo
"""
import matplotlib.pyplot as plt
import torch
import time
import os
import argparse
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# Own codes
from libs.models import Gen
from libs.utilities import load_model, image_grid, makedir
from libs.dataset import VCTDataset
import libs.pytorch_ssim
#%%
def train(generator, vgg, gOptimizer, epoch, train_loader, device, summarywriter):
# Enable trainning
generator.train()
for step, (data, target) in enumerate(tqdm(train_loader)):
data = data.to(device)
target = target.to(device)
# Zero all grads
gOptimizer.zero_grad()
# Generate a batch of new images
gen_data = generator(data)
# L1 loss
loss_L1 = torch.mean(torch.abs(gen_data - target))
loss = loss_L1
### Backpropagation ###
# Calculate all grads
loss.backward()
# Update weights and biases based on the calc grads
gOptimizer.step()
# ---------------------
# Write Gen Loss to tensorboard
summarywriter.add_scalar('Gen_Loss/train',
loss.item(),
epoch * len(train_loader) + step)
# Print images to tensorboard
if step % 20 == 0:
summarywriter.add_figure('Plot/train',
image_grid(data[0,0,:,:],
target[0,0,:,:],
gen_data[0,0,:,:]),
epoch * len(train_loader) + step,
close=True)
# Write Gen SSIM to tensorboard
summarywriter.add_scalar('Gen_SSIM/train',
ssim(gen_data, target).item(),
epoch * len(train_loader) + step)
#%%
if __name__ == '__main__':
ap = argparse.ArgumentParser(description='Restore low-dose mamography')
ap.add_argument("--rlz", type=int, required=True,
help="Realization number")
ap.add_argument("--dts", type=int, required=True,
help="Dataset size")
args = vars(ap.parse_args())
rlz = args['rlz']
dts = args['dts']
# Noise scale factor
mAsFullDose = 60
mAsLowDose = 30
red_factor = mAsLowDose / mAsFullDose
path_data = "data/"
path_models = "final_models/rlz_{}/{}_L1/".format(rlz,dts)
path_logs = "final_logs/rlz_{}/{}/{}-{}mAs".format(rlz,dts,time.strftime("%Y-%m-%d-%H%M%S", time.localtime()), mAsLowDose)
path_final_generator = path_models + "generator_DBT_VCT-{}mAs.pth".format(mAsLowDose)
LR = 1e-4
batch_size = 230
n_epochs = 60
dataset_path = '{}DBT_VCT_training_{}mAs_{}.h5'.format(path_data,mAsLowDose,dts)
# Tensorboard writer
summarywriter = SummaryWriter(log_dir=path_logs)
makedir(path_models)
makedir(path_logs)
# Test if there is a GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# Create models
generator = Gen()
# Create the optimizer and the LR scheduler
optimizer = torch.optim.Adam(generator.parameters(), lr=LR, betas=(0.5, 0.999))
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30, 40, 50], gamma=0.5)
# Send it to device (GPU if exist)
generator = generator.to(device)
# Load gen pre-trained model parameters (if exist)
start_epoch = load_model(generator,
optimizer,
scheduler,
path_final_model=path_final_generator,
path_pretrained_model=path_final_generator)
# Create dataset helper
train_set = VCTDataset(dataset_path, red_factor=red_factor, vmin=50., vmax= 5000.)
# Create dataset loader
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=batch_size,
shuffle=True,
pin_memory=True)
ssim = libs.pytorch_ssim.SSIM(window_size = 11)
# Loop on epochs
for epoch in range(start_epoch, n_epochs):
print("Epoch:[{}] LR:{}".format(epoch, optimizer.state_dict()['param_groups'][0]['lr']))
# Train the model for 1 epoch
train(generator,
None,
optimizer,
epoch,
train_loader,
device,
summarywriter)
# Update LR
scheduler.step()
# Save the model
torch.save({
'epoch': epoch,
'model_state_dict': generator.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}, path_final_generator)
if (epoch + 1) % 10 == 0:
# Testing code
os.system("python main_testing.py --rlz {} --dts {} --typ L1".format(rlz, dts))
os.system("python evaluation/MNSE.py")