forked from hhentschke/measures-of-effect-size-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmes1way.m
928 lines (886 loc) · 37.5 KB
/
mes1way.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
function [stats,varargout]=mes1way(X,esm,varargin)
% ** function [stats,varargout]=mes1way(X,esm,varargin)
% computes measures of effect size between two or more samples and places
% the results in output structure stats. A summary table including the
% effect size measures and one-way ANOVA results will be displayed in the
% command window. All input parameters except X and esm are optional and
% must be specified as parameter/value pairs in any order, e.g. as in
% mes1way(X,'eta2','group',g);
%
% For information on assumptions of the underlying model and related
% information please see the notes below TABLE 1 further down as well as
% the documentation accompanying this code.
%
% INPUT ARGUMENTS
% ---------------
% stats=mes1way(X,esm) computes the effect size measure(s) specified in
% input variable esm (see table at bottom) from input array X. X must
% have two or more columns, each representing a different group, or may
% be a single column-array (see below). Input variable esm must be a
% character array (e.g. 'eta2') or a cell array (e.g.
% {'eta2','partialeta2'}).
% stats=mes1way(...,'group',g) allows for an alternative structure of
% input data X. X must be a single-column vector and g a single-column
% vector of arbitrary numbers coding for the different groups.
% stats=mes1way(...,'isDep',1) assumes that the samples in X are dependent
% (repeated measures); accordingly, the number of samples in each group
% of X must be equal. If this parameter is omitted the assumption is one
% of independent samples. Both the effect size measures available and
% their computation are contingent on whether the samples are independent
% or dependent. NOTE: if data is dependent, it is assumed that input data
% X are sorted according to subjects. That is, if X is a multi-column-
% array all data from each subject reside in one row. If X is a single-
% column array, the equivalent assumption is made: that data for subjects
% are listed in the order in which they occur within each group.
% stats=mes1way(...,'missVal','listwise') omits NaNs and Infs in X,
% summarily termed here as missing values, in listwise fashion: if X is a
% multi-column array and there is a missing value anywhere in X, the
% entire row of X will be omitted from analysis. If X is in single-column
% format, positions corresponding to the row(s) in question will be
% omitted. If set to 'pairwise', only the individual missing data will be
% omitted. Note: 'listwise' is mandatory (and therefore the default) for
% dependent data. Likewise, 'pairwise' is mandatory and default for
% independent unbalanced data. It is also the default for independent,
% balanced data.
% stats=mes1way(...,'nBoot',n) computes confidence intervals of
% the statistic in question via bootstrapping n times. n should be on the
% order of thousands, otherwise bootstrapping will lead to inaccurate
% results. By default or if the value of nBoot is set to zero or
% nonsensical values (<0, infinity, nan) confidence intervals will be
% computed analytically (where possible).
% stats=mes1way(...,'confLevel',0.90) computes 90 % confidence intervals
% of the statistic in question (95 % ci are the default; any value may be
% specified)
% stats=mes1way(...,'cWeight',c) allows specification of contrast weights
% for the computation of effect size measures like standardized contrasts
% and eta squared for focussed comparisons (see TABLE 1). Input array c
% must contain as many columns as there are groups; you may specifiy as
% many rows (=contrasts) as you wish.
% stats=mes1way(...,'tDenom','msw') computes, in case of dependent data, F
% and p values of contrasts, as well as confidence intervals of psi and
% g_psi, from MS_[between x subject]. The default is 'sd', which means
% that the values are based on the contrasts' difference score. Please
% see the documentation for detailed explanation.
% -------------------------------------------------------------------------
% TABLE 1: ANALYSES TO BE SPECIFIED IN INPUT VARIABLE esm
% -------------------------------------------------------------------------
% esm QUANTITIY COMPUTED ((*) require input of contrast weights)
% 'psi' unstandardized contrast (*)
% 'g_psi' standardized contrast (*)
% 'psibysd' standardized contrast for dependent data (*)
% 'eta2' eta squared
% 'partialeta2' partial eta squared
% 'omega2', omega squared
% 'partialomega2' partial omega squared
%
% Notes:
% i. Parameters marked by (*) need contrast weights to be
% computed; by definition they do not exist for an omnibus effect. The
% other parameters will be computed for both the omnibus effect and the
% specified contrasts.
% ii. 'g_psi' is the oneway equivalent of Hedges' g, namely, contrast
% divided by the square root of the pooled within-conditions variance.
% Its value is identical for dependent and independent data, but for
% dependent data confidence intervals will be smaller in case of
% correlations between the groups.
% iii. 'psibysd' is a standardized contrast for dependent data only,
% namely, contrast divided by the standard deviation of the difference
% score. It is the oneway equivalent of mdbysd in mes.m.
% iv. Fixed factors are assumed.
% v. Independent data may be unbalanced.
% vi. In the computation of omega2 and partial omega2 for dependent data,
% an additive model (no subject x treatment interaction) is assumed
%
% OUTPUT ARGUMENTS
% ----------------
% The results of the computations are placed into fields of output
% structure stats with names corresponding to the analyses requested. For
% example, stats=mes1way(X,{'eta2','partialeta2'}) will result in fields
% .eta2
% .partialeta2
% PLEASE NOTE: if contrast weights were specified, all output arguments
% will be single- or two-column arrays holding results in the following
% (row) order:
% 1. omnibus effect
% 2. first contrast
% 3. second contrast
% and so on. If a parameter is not defined for the omnibus effect or for
% contrasts, the corresponding entries will be NaN.
% Where applicable, confidence intervals will be placed in fields
% .eta2Ci
% .partialeta2Ci
% and the computations underlying confidence intervals (either of 'none',
% 'bootstrap', 'approximate analytical', or 'exact analytical') will be
% placed in fields
% .eta2CiType
% .partialeta2CiType
% Additional fields:
% .n (sample sizes)
% .confLevel (confidence level)
% .cWeight (the contrast weights)
% stats will also have fields .isDep and .nBoot with the same values as the
% corresponding input arguments, thus providing potentially crucial post-
% analysis information. The second, optional output argument is the summary
% table of results.
% -------------------------------------------------------------------------
% Measures of Effect Size Toolbox Version 1.6.1, November 2018
% Code by Harald Hentschke (University Hospital of Tübingen) and
% Maik Stüttgen (University Medical Center Mainz)
% For additional information see Hentschke and Stüttgen,
% Eur J Neurosci 34:1887-1894, 2011
% -------------------------------------------------------------------------
% -------------------------------------------------------------------------
% STRUCTURE OF CODE
% The code is composed of two major parts: In PART I input arguments are
% checked and pre-processed, 'constants' set up, and all kinds of other
% preparatory and householding jobs accomplished. PART II contains the
% computations proper. Right at the beginning, summed squares, F and p
% values are computed in local function prepcomp, which also accomplishes
% assembly of bootstrapped data if requested. Effect sizes and confidence
% intervals are then computed and the results placed in structure array
% 'stats' as described above. The results are additionally collected in
% cell array 'table' which is displayed in the command window (and may also
% be retrieved as an output argument)
% -------------------------------------------------------------------------
% ----- default values & varargin -----
% standard values of optional input arguments
group=[];
isDep=false;
missVal='pairwise';
nBoot=0;
cWeight=[];
confLevel=.95;
tDenom='sd';
% check variable number of input args:
% - even number (parameter AND value specified)?
% - convert to proper upper/lowercase spelling as above
% - check whether valid parameter was given
% - overwrite defaults by values, if specified
nvarg=numel(varargin);
v=who;
if nvarg
if nvarg/2==round(nvarg/2)
for g=1:2:nvarg
% check which optional input parameter is given, ignoring case, and
% impose spelling used internally
ix=find(strcmpi(varargin{g},v));
if ~isempty(ix)
varargin{g}=v{ix};
else
error(['invalid optional input parameter (' varargin{g} ') was specified']);
end
end
% finally, the assignment of values to parameters
pvpmod(varargin);
else
error('optional input parameters must be specified as parameter/value pairs, e.g. as in ''par1'',1')
end
end
% ----- a few 'constants':
alpha=1-confLevel;
% minimal number of bootstrapping runs below which a warning will be issued
% (and bootstrapping will be skipped)
minNBootstrap=1000;
% -------------------------------------------------------------------------
% ------- PART I: CHECKS OF INPUT ARGS & OTHER PREPARATORY WORKS ----------
% -------------------------------------------------------------------------
% Variable list_analyses below is a list of all possible analyses:
% - column 1 holds the shortcut as strings
% - column 2 holds 1 for quantities REQUIRING a contrast
% - column 3 is a short description of the analyses
% This is the 'master list' of all analyses against which input argument
% esm will be checked (see) below
list_analysis={...
'psi', 1, 'unstandardized contrast';...
'g_psi', 1, 'standardized contrast';...
'psibysd', 1, 'standardized contrast for dependent data';...
'eta2', 0, 'eta squared';...
'omega2', 0, 'omega squared';...
'partialeta2', 0, 'partial eta squared';...
'partialomega2', 0, 'partial omega squared';...
};
% in case esm is a char array convert it to a cell array because the code
% below relies on it
if ischar(esm)
esm={esm};
end
tmp=find(strcmp('psibysd',esm));
if ~isempty(tmp) && ~isDep
warning('parameter ''psibysd'' can only be computed for dependent data - eliminating it from list of parameters to be computed')
esm(tmp)=[];
end
% the tag column, extracted
listTag=cat(1,list_analysis{:,2});
% indices to currently requested analyses
listIx=ismember(list_analysis(:,1),esm);
% unique tags of these analyses
uTag=unique(listTag(listIx));
% catch a few silly errors:
% - typos or non-existent analysis type
if any(~ismember(esm,list_analysis(:,1)))
error('An illegal type of analysis was specified');
end
% check whether contrast weight(s) were specified, whether they are
% required, and set according flags (exact checks of contrast weights will
% be done further below)
if isempty(cWeight)
doContrast=false;
if any(uTag)
error('part of the requested analyses require contrast weights as input args')
end
else
doContrast=true;
end
% illegal values for missVal
if isempty(find(strcmpi(missVal,{'listwise','pairwise'})))
error('illegal value for input parameter ''missVal'' (choose ''listwise'' or ''pairwise)''');
end
if isDep && ~strcmpi(missVal,'listwise')
warning('dependent data - setting input parameter ''missVal'' to ''listwise''');
missVal='listwise';
end
% --- check and possibly transform input X: if it is a multiple column
% array, transform it into a single column array and set up variable group.
% This may appear counterintuitive as the computations are much easier and
% elegantly done on a matrix, in a vectorized version. However, this holds
% true only for balanced data. In real life more often than not we have to
% deal with unbalanced data, a vectorized computation of which would be
% cumbersome and, in conjunction with bootstrapping, inefficient.
% Therefore, the code is designed to deal with the most general case, and
% requires reshaping multiple column arrays into a single column array.
[nRowX nColX]=size(X);
if nColX>1
% *** X is a multiple column-array:
if ~isempty(group)
% - group specified although not necessary
warning('input variable ''group'' will be ignored with X having several columns');
% instead, it will be generated internally
end
nGroup=nColX;
group=repmat(1:nGroup,nRowX,1);
goodIx=isfinite(X);
nSample=sum(goodIx);
% transformation of X and group into single column arrays and generation
% of groupIx may need to be done after the switch construct, unless the
% 'pairwise' case below is run
doTransform=true;
% missing values (nans and infs) in X
if any(any(~goodIx))
switch lower(missVal)
case 'listwise'
% omit bad row(s)
badRowIx=any(~goodIx,2);
X(badRowIx,:)=[];
group(badRowIx,:)=[];
nRowX=size(X,1);
nSample=repmat(nRowX,1,nColX);
% (value of doTransform unchanged)
case 'pairwise'
% omit bad values, at the same time transforming X and group into
% single col-format
X=X(goodIx);
group=group(goodIx);
% generate groupIx, the indexes coding for group assignment
tmp=cumsum([0 nSample]);
for gIx=nGroup:-1:1
groupIx{gIx}=tmp(gIx)+1:tmp(gIx+1);
end
doTransform=false;
% nSample unchanged
end
end
if doTransform
% transform X and group into single col-format
X=X(:);
group=group(:);
for gIx=nGroup:-1:1
groupIx{gIx}=(gIx-1)*nSample+1:gIx*nSample;
end
end
else
% *** X is a single column-array:
if isempty(group)
% - group not specified
error('input variable ''group'' must be specified when X is a single column-array');
else
[tmpNRow tmpNCol]=size(group);
% - group not a single col-array
if tmpNCol>1
error('input variable group must be a single-column array');
end
% - numel not matching
if tmpNRow~=nRowX
error('input variables group and X must have the same number of elements');
end
% - undefined elements in group
if any(~isfinite(group))
error('input variable group contains NaNs or Infs');
end
end
% determine how many groups there are
[uGroup,aIx]=unique(group);
nGroup=numel(uGroup);
% revert sorting implicitly done by unique because the user probably
% expects the original order to be maintained
uGroup=group(sort(aIx));
% if group is unsorted in the sense that samples from any group do not
% form a contiguous block it appears possible that the data are messed
% up, so better generate an error here and force the user to rethink (and
% sort) the data
isContiguousGroups=numel(find(diff(group)))==nGroup-1;
if ~isContiguousGroups
error([mfilename ' expects samples from each group to form contiguous blocks. Please sort your data accordingly']);
end
if isDep && mod(nRowX,nGroup)
error('input variable X supposedly holds dependent data, but sample sizes are unequal');
end
if strcmpi(missVal,'listwise') && mod(nRowX,nGroup)
warning('listwise elimination of missing data is undefined with unbalanced data - employing pairwise elimination (if any)');
missVal='pairwise';
end
% logical index to missing values (nans and infs) in X
badIx= ~isfinite(X);
% if listwise elimination is requested and we have dependent or balanced data ...
if strcmpi(missVal,'listwise') && ~mod(nRowX,nGroup)
if ~isempty(any(badIx))
badIx=reshape(badIx,nRowX/nGroup,nGroup);
badIx(any(badIx,2),:)=true;
badIx=badIx(:);
X(badIx)=[];
group(badIx)=[];
nRowX=size(X,1);
end
% scalar expansion of variable nSample
nSample=repmat(nRowX/nGroup,1,nGroup);
for gIx=nGroup:-1:1
groupIx{gIx}=(gIx-1)*nSample+1:gIx*nSample;
end
% variable group is not needed anymore
group=[];
else
% pairwise elimination requested or independent/unbalanced data
if ~isempty(any(badIx))
X(badIx)=[];
group(badIx)=[];
end
for gIx=nGroup:-1:1
groupIx{gIx}=find(group==uGroup(gIx));
nSample(gIx)=numel(groupIx{gIx});
end
end
end
% At this point, variables nGroup and nSample hold the number of groups (a
% scalar) and the number of samples in each group (a row array),
% respectively, and X is a single column-array of data devoid of NaNs and
% Infs; group association is coded by variable group
% just to be 100% sure, this is an internal check that elements of groupIx
% are really integers incrementing in steps of 1
for g=1:nGroup
tmp=unique(diff(groupIx{g}));
if numel(groupIx{g})>1 && ~(numel(tmp)==1 && tmp==1)
error('internal: groupIx messed up - tell the programmer');
end
end
% --- check bootstrapping settings
doBoot=false;
if isfinite(nBoot)
if nBoot>=minNBootstrap;
doBoot=true;
else
if nBoot~=0
% warn only if nBoot small but different from zero because zero may
% be a deliberate input value
warning('number of bootstrap repetitions is not adequate - not bootstrapping');
end
nBoot=0;
end
end
% --- check other input arguments
if confLevel<=0 || confLevel>=1
error('input variable ''confLevel'' must be a scalar of value >0 and <1');
end
[nCo nCoCol]=size(cWeight);
if doContrast
if nCoCol~=nGroup
error('number of contrast weights (per row) does not match number of groups in input data');
end
if any(any(~isfinite(cWeight)))
error('contrast weights contain foul data (NaN or Inf)');
end
% check whether we're dealing with standard sets
if any(abs(sum(abs(cWeight),2)-2)>eps(2))
warning('at least one set of contrast weights is not a standard set: standardized mean differences (g_psi, psibysd) computed with this set do not represent the difference between the averages of two subsets of means')
end
% is there more than one contrast weight of zero? This may reflect the
% user's intention to have one or more conditions 'set aside', in which
% case the computations will not be valid
if any(sum(cWeight==0,2)>1)
warning('at least one set of contrast weights contains more than one zeroes - if you wish to exclude the corresponding groups from analysis you should eliminate them prior to computation')
end
end
if ~any(ismember(tDenom,{'sd','msw'}))
error('bad choice for input parameter ''tDenom'' (choose ''sd'' or ''msw'')');
end
% -------------------------------------------------------------------------
% ------- PART II: THE WORKS ----------
% -------------------------------------------------------------------------
% create a few standard fields
stats.isDep=isDep;
stats.nBoot=nBoot;
stats.confLevel=confLevel;
stats.n=nSample;
stats.cWeight=cWeight;
% preparatory computations of SS, MS etc.
r=prepcomp(X,groupIx,nSample,isDep,doBoot,nBoot,cWeight,tDenom);
% if eta2, partialeta2, omega2 or partialomega2 or any combination thereof
% is requested AND analytical CI shall be computed AND the data are
% independent, compute CI for partial eta2 here because those of most other
% ESM can be derived from them (and computing all independently of each
% other would be a waste).
if any(ismember({'eta2','partialeta2','omega2','partialomega2'},esm)) && ~doBoot && ~isDep
% exact analytical confidence intervals for eta2 and/or partial eta2
% (Smithson 2003, p.43 [5.6]), omnibus effects of which are identical in
% oneway independent designs
pEta2Ci=ncpci(r.F,'F',[r.dfGroup,r.dfErr],'confLevel',confLevel);
pEta2Ci=pEta2Ci./(pEta2Ci+r.dfGroup+r.dfErr+1);
for g=1:nCo
% exact ci for contrasts: these apply only to PARTIAL eta2 because
% partial eta2 for a contrast = SSpsi/(SSpsi+SSerr) whereas eta2 for a
% contrast = SSpsi/SStot = SSpsi/(SSa+SSerr), involving three terms
pEta2Ci(g+1,:)=ncpci(r.FPsi(g),'F',[1,r.dfErr],'confLevel',confLevel);
pEta2Ci(g+1,:)=pEta2Ci(g+1,:)./(pEta2Ci(g+1,:)+1+r.dfErr+1);
end
% information on kind of CI
pEta2CiType=repmat('exact analytical',nCo+1,1);
end
% now computations of effect size parameters:
nEs=numel(esm);
% a temporary container to hold [es ci_lo ci_up] in the order in
% which they are computed (for the table of results to be displayed)
esStore=repmat(nan,[nCo+1 nEs*3]);
for tti=1:nEs
curEs=esm{tti};
es=repmat(nan,nCo+1,1);
% If analytical confidence intervals for the statistic in question cannot
% be computed and no bootstrapping is requested, ci must be set to nan.
% Do this here for all statistics to avoid redundant assignments. ci will
% be overwritten with meaningful values if i) there is a formula for
% analytical confidence intervals implemented within the respective case
% in the switch statement, or ii) confidence intervals based on
% bootstrapping are computed right after the switch statement
ci=repmat(nan,nCo+1,2);
% a similar argument applies to variable ciType, which indicates on which
% method the computation of ci is based (which may differ between the
% omnibus effect and contrasts, hence we need more than one row
if doBoot
ciType=repmat('bootstrap',nCo+1,1);
else
ciType=repmat('none',nCo+1,1);
end
switch curEs
case 'psi'
% nan as first row because a contrast is not an omnibus effect; then
% the contrast(s)
es=cat(1,repmat(nan,1,nBoot+1),r.psi);
if ~doBoot
% note: confidence intervals of contrasts can be computed in an
% exact fashion from central t distributions and are therefore
% tagged 'exact analytical' here, although exactness does not, as
% in the case of other mes below, imply computation via noncentral
% distributions
if isDep
% dependent samples:
if strcmpi(tDenom,'sd')
% exact CI of contrast
ci(2:nCo+1,:)=repmat(r.psi,1,2) + r.sD/sqrt(nSample(1)) * tinv([alpha/2 1-alpha/2],r.dfSubj);
elseif strcmpi(tDenom,'msw')
% exact CI of contrast
for g=1:nCo
% SE of contrast
fac=sqrt(r.msGroupSubj*sum((cWeight(g,:)).^2./nSample));
ci(g+1,:)=repmat(r.psi(g),1,2) + fac * tinv([alpha/2 1-alpha/2],r.dfGroupSubj);
end
end
ciType=char('none', repmat('exact analytical',nCo,1));
else
% independent samples:
for g=1:nCo
% SE of contrast
fac=sqrt(r.msErr*sum((cWeight(g,:)).^2./nSample));
ci(g+1,:)=repmat(r.psi(g),1,2) + fac * tinv([alpha/2 1-alpha/2],r.dfErr);
end
ciType=char('none', repmat('exact analytical',nCo,1));
end
end
case 'g_psi'
% nan as first row because this mes is not defined for an omnibus
% effect; then the contrasts divided by standardizer proposed by
% Kline 2004, the square root of the pooled within-conditions
% variance, making this the equivalent of Hedges' g
es=cat(1,repmat(nan,1,nBoot+1),r.psi./repmat(sqrt(r.msErr),nCo,1));
if ~doBoot
if isDep
% dependent samples:
if strcmpi(tDenom,'sd')
% exact CI of contrast...
tmp=repmat(r.psi,1,2) + r.sD/sqrt(nSample(1)) * tinv([alpha/2 1-alpha/2],r.dfSubj);
% ...leading to approximate CI of g_psi
ci(2:nCo+1,:)=tmp/sqrt(r.msErr);
elseif strcmpi(tDenom,'msw')
% exact CI of contrast...
for g=1:nCo
% SE of contrast
fac=sqrt(r.msGroupSubj*sum((cWeight(g,:)).^2./nSample));
% ...leading to approximate CI of g_psi
tmp=repmat(r.psi(g),1,2) + fac * tinv([alpha/2 1-alpha/2],r.dfGroupSubj);
ci(g+1,:)=tmp/sqrt(r.msErr);
end
end
ciType=char('none', repmat('approximate analytical',nCo,1));
else
% independent samples: exact confidence intervals
for g=1:nCo
fac=sqrt(sum((cWeight(g,:)).^2./nSample));
ci(g+1,:)=fac*ncpci(r.tPsi(g),'t',r.dfErr,'confLevel',confLevel);
end
ciType=char('none', repmat('exact analytical',nCo,1));
end
end
case 'psibysd'
% psibysd is defined only for dependent data; as the criterion of
% dependence has been dealt with in the code above we do not heed it
% here
% - nan as first row, then the contrasts divided by standard
% deviation of difference scores
es=cat(1,repmat(nan,1,nBoot+1),r.psi./r.sD);
if ~doBoot
% as for g_psi above: exact CI of contrast, from which approximate
% CI for es can be derived
tmp=repmat(r.psi,1,2) + r.sD/sqrt(nSample(1)) * tinv([alpha/2 1-alpha/2],r.dfSubj);
ci(2:nCo+1,:)=tmp./repmat(r.sD,1,2);
ciType=char('none', repmat('approximate analytical',nCo,1));
end
case 'eta2'
% eta2 does not differentiate between dependent and independent
% samples
es=r.ssGroup./r.ssTot;
if doContrast
es=cat(1,es,r.ssPsi./repmat(r.ssTot,nCo,1));
end
if ~doBoot
if ~isDep
% as explained above, ci for the omnibus effect are computable,
% those for the contrasts are not
ci(1,:)=pEta2Ci(1,:);
ciType=char('exact analytical', repmat('none',nCo,1));
end
end
case 'partialeta2'
if isDep
% dependent case: SSerror=r.ssGroupSubj
es=r.ssGroup./(r.ssGroup+r.ssGroupSubj);
if doContrast
es=cat(1,es,r.ssPsi./(r.ssPsi+repmat(r.ssGroupSubj,nCo,1)));
end
else
% independent samples: main effect same as eta squared because
% r.ssTot=r.ssGroup+r.ssErr
es=r.ssGroup./(r.ssTot);
% contrast: denominator differs from dependent case
if doContrast
es=cat(1,es,r.ssPsi./(r.ssPsi+repmat(r.ssErr,nCo,1)));
end
if ~doBoot
% all ci computed above apply to partial eta2
ci=pEta2Ci;
ciType=pEta2CiType;
end
end
case 'omega2'
if isDep
% formula according to Kline p. 188 & Table 6.8, setting
% MSeffect=r.msGroup and MSerror=r.msGroupSubj
% (note: in rare cases of partial omega squared being SMALLER than
% omega squared, the term
% r.msSubj-r.msGroupSubj
% in the denominator of omega squared must be negative)
es=(r.dfGroup/sum(nSample)*(r.msGroup-r.msGroupSubj))./...
(r.dfGroup/sum(nSample)*(r.msGroup-r.msGroupSubj) + ...
1/nGroup*(r.msSubj-r.msGroupSubj) + r.msGroupSubj);
% condensed formula from Grissom & Kim 2012, p. 198, formula 6.17
% es=(r.dfGroup*(r.msGroup-r.msGroupSubj))./(r.ssTot+r.msSubj);
if doContrast
tmp=(1/sum(nSample)*(r.ssPsi-repmat(r.msGroupSubj,nCo,1)))./...
repmat(r.dfGroup/sum(nSample)*(r.msGroup-r.msGroupSubj) + ...
1/nGroup*(r.msSubj-r.msGroupSubj) + r.msGroupSubj,nCo,1);
es=cat(1,es,tmp);
end
else
es=(r.ssGroup-(nGroup-1).*r.msErr)./(r.ssTot+r.msErr);
if doContrast
% contrasts: derived from formula 6.30, p. 186, Kline 2004, and
% setting df(group)=1 and MS=SS
es=cat(1,es,(r.ssPsi-repmat(r.msErr,nCo,1))./repmat(r.ssTot+r.msErr,nCo,1));
end
if ~doBoot
% exact analytical confidence intervals according to Fidler &
% Thompson 2001, p. 593, based on those for partial eta2
tmp=(r.ssTot*(1-pEta2Ci))/r.dfErr;
ci(1,:)=(r.ssTot*pEta2Ci(1,:)-r.dfGroup*tmp(1,:))./(r.ssTot+tmp(1,:));
% as in the case of eta2 and contrasts, we cannot compute ci for
% contrasts for omega2 for the same reasons stated above
ciType=char('exact analytical', repmat('none',nCo,1));
end
end
case 'partialomega2'
if isDep
% formula according to Kline p. 188 & Table 6.8, setting
% MSeffect=r.msGroup and MSerror=r.msGroupSubj (note that the only
% difference to the corresponding case of omega2 is one term less
% in the denominator, namely the subjects' variance component.
es=(r.dfGroup/sum(nSample)*(r.msGroup-r.msGroupSubj))./...
(r.dfGroup/sum(nSample)*(r.msGroup-r.msGroupSubj) + ...
r.msGroupSubj);
if doContrast
tmp=(1/sum(nSample)*(r.ssPsi-repmat(r.msGroupSubj,nCo,1)))./...
repmat(r.dfGroup/sum(nSample)*(r.msGroup-r.msGroupSubj) + ...
r.msGroupSubj,nCo,1);
es=cat(1,es,tmp);
end
else
% independent samples: same as omega squared
es=(r.ssGroup-(nGroup-1).*r.msErr)./(r.ssTot+r.msErr);
if doContrast
% contrasts: assembled from Kline p. 186 & Table 6.7
tmp=(1/sum(nSample)*(r.ssPsi-repmat(r.msErr,nCo,1)))./...
(1/sum(nSample)*(r.ssPsi-repmat(r.msErr,nCo,1)) + repmat(r.msErr,nCo,1));
es=cat(1,es,tmp);
end
if ~doBoot
% exact analytical confidence intervals according to Fidler &
% Thompson 2001, p. 593, based on those for partial eta2
tmp=(r.ssTot*(1-pEta2Ci))/r.dfErr;
ci=(r.ssTot*pEta2Ci(1,:)-r.dfGroup*tmp(1,:))./(r.ssTot+tmp(1,:));
if doContrast
% same formula applied to CI of contrasts, taking into account df(group)=1
ci(2:nCo+1,:)=(r.ssTot*pEta2Ci(2:nCo+1,:)-1*tmp(2:nCo+1,:))./(r.ssTot+tmp(2:nCo+1,:));
end
ciType=pEta2CiType;
end
end
otherwise
error(['internal error: unrecognized test not caught by input checks: ' curEs]);
end
% *********************************************************************
% If data were NOT bootstrapped, all computations are done at this
% point and the results can be placed into appropriate fields of output
% variable stats. If they were bootstrapped, confidence intervals must
% be computed and the ES statistics extracted from the first element of
% variable es.
% *********************************************************************
if doBoot
% determine confidence intervals from array of effect size measures
% generated from bootstrapped data
ci=prctile(es(:,2:end)',[alpha/2 1-alpha/2]'*100)';
% retain first column; this is the es computed from real data
es=es(:,1);
end
% place es and ci in esStore
esStore(:,(tti-1)*3+1:tti*3)=[es ci];
% finally, use dynamic fields to store currently computed measures in
% output variable stats
stats.(curEs)=es;
stats.([curEs 'Ci'])=ci;
stats.([curEs 'CiType'])=ciType;
end
% assemble table for display and optional output:
% the concatenated es and ci as cell array
esStore=num2cell(esStore);
% 'fillers' of empty cells
filla=cell(1,nEs*3);
% insert ci titles
ciTi=cell(2,nEs);
[ciTi{1,:}]=deal('ci_lo');
[ciTi{2,:}]=deal('ci_up');
% chars to be added to headers of the F and p columns
if isDep && nCo>0 && strcmpi(tDenom,'sd')
ac=' (**)';
else
ac='';
end
esm=cat(1,esm,ciTi);
esm=esm(:)';
% column order:
% source | SS | df | MS | F | p | effect sizes (in the order requested)
summaryTable={...
'source', 'SS', 'df', 'MS', ['F',ac] ['p',ac] esm{1:end};...
'between-groups', r.ssGroup(1), r.dfGroup, r.msGroup(1), r.F(1), r.p(1), esStore{1,:};...
};
for g=1:nCo
summaryTable=cat(1,summaryTable,...
{['- psi' int2str(g)], r.ssPsi(g), 1, r.msPsi(g), r.FPsi(g), r.pPsi(g), esStore{1+g,:}});
end
summaryTable=cat(1,summaryTable,...
{'within-groups', r.ssErr(1), r.dfErr, r.msErr(1), [], [], filla{1:end}});
if isDep
summaryTable=cat(1,summaryTable,...
{'- subj', r.ssSubj(1), r.dfSubj, r.msSubj(1), [], [], filla{1:end};...
'- group x subj', r.ssGroupSubj(1),r.dfGroupSubj, r.msGroupSubj(1),[], [], filla{1:end}});
end
summaryTable=cat(1,summaryTable,...
{'total', r.ssTot(1), r.dfTot, r.msTot(1), [], [], filla{1:end}});
summaryTable
if isDep && nCo>0 && strcmpi(tDenom,'sd')
disp(char({...
'(**) NOTE: F and p values and the confidence intervals of psi and';...
' g_psi are derived from the standard deviation of the contrasts'' ';...
' difference scores. For an alternative computation set optional ';...
' input parameter ''tDenom'' to ''msw''.';...
' See the documentation for detailed information.'}));
end
if nargout>1
varargout{1}=summaryTable;
end
% ========================= LOCAL FUNCTIONS ===============================
% ========================= LOCAL FUNCTIONS ===============================
function r=prepcomp(x,groupIx,nSample,isDep,doBoot,nBoot,cWeight,tDenom)
% performs preparatory computations for oneway analyses on single column
% array x with group assignment coded by input var group
nGroup=numel(groupIx);
nCo=size(cWeight,1);
% ------------------ START BY BOOTSTRAPPING (IF REQUESTED) ----------------
if doBoot
% *********************************************************************
% Here, individual, groupwise resampled instances of variable X are
% generated, expanding X in the second dimension: the first column
% contains the original data, the others will be filled up with sampled
% (with replacement) data.
% *********************************************************************
% variable bootSamX generated below shall contain indices to be used for
% randomly sampling (with replacement) the original data (*** requires
% groupIx to be integers incrementing in steps of 1! ***)
if isDep
% dependent data: generate random sampling index for first group and
% replicate for all other groups (which are identical in size)
bootSamX=repmat(ceil(nSample(1)*rand([nSample(1) nBoot])),[nGroup,1]);
% add offset due to arrangement of data in a single-column array
for g=1:nGroup
bootSamX(groupIx{g},:)=bootSamX(groupIx{g},:)+groupIx{g}(1)-1;
end
else
% independent data: resample data within each group independent of data
% points picked in other groups
bootSamX=repmat(nan,sum(nSample),nBoot);
for g=1:nGroup
bootSamX(groupIx{g},1:nBoot)=groupIx{g}(1)-1+ceil(nSample(g)*rand([nSample(g) nBoot]));
end
end
% from second column onwards fill with sampled data
x(:,2:nBoot+1)=x(bootSamX);
% delete resampling index
clear bootSam*
end
% between-groups df
r.dfGroup=nGroup-1;
% within-groups df
r.dfErr=sum(nSample-1);
% within-subjects df
r.dfSubj=nSample(1)-1;
% group x subjects df
r.dfGroupSubj=r.dfGroup*r.dfSubj;
% grand mean
r.meanGrand=mean(x);
r.ssGroup=0;
r.ssErr=0;
for g=nGroup:-1:1
% means of groups
r.meanGroup(g,:)=sum(x(groupIx{g},:))/nSample(g);
% SS_a, or SS_effect, between-groups SS
r.ssGroup=r.ssGroup + nSample(g)*(r.meanGroup(g,:)-r.meanGrand).^2;
% SS_error, within-groups SS
r.ssErr=r.ssErr + sum((x(groupIx{g},:)-repmat(r.meanGroup(g,:),nSample(g),1)).^2);
end
% between-groups MS
r.msGroup=r.ssGroup/r.dfGroup;
% within-groups MS
r.msErr=r.ssErr/r.dfErr;
% SS_t, the sum of both
r.ssTot=r.ssGroup+r.ssErr;
% corresponding df
r.dfTot=r.dfGroup+r.dfErr;
r.msTot=r.ssTot/r.dfTot;
% parameters for dependent data
if isDep
nSubj=nSample(1);
r.ssSubj=zeros(1,nBoot+1);
for g=nSubj:-1:1
% means of subjects
r.meanSubj(g,:)=mean(x(g:nSubj:end,:));
% SS_subj, between-subjects SS
r.ssSubj=r.ssSubj+nGroup*(r.meanSubj(g,:)-r.meanGrand).^2;
end
% SS group x subject
r.ssGroupSubj=r.ssErr-r.ssSubj;
% MS
r.msSubj=r.ssSubj/r.dfSubj;
r.msGroupSubj=r.ssGroupSubj/r.dfGroupSubj;
end
% compute contrasts and their SS
if nCo>0
for g=nCo:-1:1
% contrasts
r.psi(g,:)=sum(repmat(cWeight(g,:)',1,nBoot+1).*r.meanGroup);
% factor needed for computation of SS_psi and t for contrasts
r.cFac(g,:)=sum(cWeight(g,:).^2./nSample);
% SS_psi: see Kline 2004 (formula 6.8, p.168)
r.ssPsi(g,:)=r.psi(g,:).^2./r.cFac(g,:);
if isDep
% std of the difference score
tmp=repmat(cWeight(g,:),nSample(1),1);
tmp=repmat(tmp(:),1,nBoot+1);
tmp=reshape(x.*tmp,[nSample(1) nGroup nBoot+1]);
r.sD(g,:)=permute(std(sum(tmp,2)),[1 3 2]);
end
end
% as df is always 1 MS=SS, but create field nonetheless
r.msPsi=r.ssPsi;
end
% finally, t, F, p
if isDep
r.F=r.msGroup./r.msGroupSubj;
r.p=1-fcdf(r.F,r.dfGroup,r.dfGroupSubj);
if nCo>0
if strcmpi(tDenom,'sd')
% compute p values of contrasts from t statistic (Kline 2004, p.
% 168): note that this t statistic is based on the std of the
% contrast's difference score (in the denominator, see line below).
% This means that i) t takes into account only the variability
% between the groups/subjects compared in the contrast; specifically,
% groups with a contrast weight of zero do not play a role, and ii) a
% potential lack of sphericity among groups in the full data set is
% not a problem.
r.tPsi=r.psi./(r.sD/sqrt(nSample(1)));
r.pPsi=2*(1-tcdf(abs(r.tPsi),r.dfSubj));
r.FPsi=r.tPsi.^2;
elseif strcmpi(tDenom,'msw')
% F and p values are computed the 'classical' way, which takes
% variability from all groups into account
r.FPsi=r.msPsi./repmat(r.msGroupSubj,nCo,1);
r.pPsi=1-fcdf(r.FPsi,1,r.dfGroupSubj);
r.tPsi=sign(r.psi).*sqrt(r.FPsi);
end
end
else
r.F=r.msGroup./r.msErr;
r.p=1-fcdf(r.F,r.dfGroup,r.dfErr);
if nCo>0
% compute p values of contrasts from independent data on the basis of t
% statistic (Kline 2004, formula 6.7, p. 168)
r.tPsi=r.psi./sqrt(repmat(r.msErr,nCo,1).*repmat(r.cFac,1,nBoot+1));
r.pPsi=2*(1-tcdf(abs(r.tPsi),r.dfErr));
% F is by definition the square of t
r.FPsi=r.tPsi.^2;
% § note: for the example in Kline 2004, table 6.4, the F values are
% all correct but the contrast-associated p values do not match
end
end