forked from hhentschke/measures-of-effect-size-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ncpci.m
224 lines (209 loc) · 7.31 KB
/
ncpci.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
function ci=ncpci(x,fType,df,varargin)
% ** function ci=ncpci(x,fType,df,varargin)
% iteratively approaches two-sided confidence intervals for the
% noncentrality parameter of a noncentral Chi square (abbreviated X2), F or
% t distribution with degrees of freedom df, given an abscissa value (X2, F
% or t value). This is achieved by varying the X2, F or t noncentrality
% parameter of the corresponding probability distribution function (pdf)
% until the given abscissa value is, within a certain precision, at the
% percentile values required for the confidence interval (2.5th and 97.5th
% percentile for lower and upper 95 % confidence intervals, respectively).
% All input parameters listed below except x, fType and df are
% optional and must be specified as parameter/value pairs, e.g. as in
% ncpci(x,'t',df,'confLevel',.9)
%
% >>> INPUT VARIABLES >>>
% NAME TYPE/DEFAULT DESCRIPTION
% x double scalar X2, F or t value
% fType char 'X2','F' or 't'
% df scalar or array degrees of freedom
% (F pdf: [numerator denominator])
% confLevel double, 0.95 confidence level
% prec double scalar, precision: iteration will run until the
% 1e-6 estimated percentile is <=prec away from
% the requested percentile
% doAnimate logical,false if true, the iteration process will be
% graphically displayed in a figure window
%
% <<< OUTPUT VARIABLES <<<
% NAME TYPE/DEFAULT DESCRIPTION
% ci 2 element array confidence intervals
% -------------------------------------------------------------------------
% Measures of Effect Size Toolbox Version 1.6.1, November 2018
% Code by Harald Hentschke (University Hospital of Tübingen) and
% Maik Stüttgen (University Medical Center Mainz)
% For additional information see Hentschke and Stüttgen,
% Eur J Neurosci 34:1887-1894, 2011
% -------------------------------------------------------------------------
% defaults
prec=1e-6;
confLevel=.95;
doAnimate=false;
% replace defaults by input, if any
pvpmod(varargin);
% convert df to cell for automatic expansion of parameters
df=num2cell(df);
% convert confidence level to alpha
alpha=1-confLevel;
% target p values
pTarget=[1-alpha/2 alpha/2];
% --- error checks, assignments of function handles, etc.
% are we dealing with pdf defined only for positive abscissa values?
isPosPdf=ismember(fType,{'X2','F'});
% if so...
if isPosPdf && x<0
error('input arg ''x'' is negative but must be positive for X2 and F distributions')
end
% start index for outermost loop below, determining whether lower CI shall
% be computed or not
loopStartIx=1;
switch fType
case 'X2'
curPdf=@ncx2pdf;
curCdf=@ncx2cdf;
curInv=@chi2inv;
% abscissa limits for plots (if doAnimate==true): first row for lower
% CI, second row for upper CI
abscissLim=[0 2*x;0 5*x];
% check: if cdf of x with noncentrality parameter 0 is less than
% 1-alpha/2 don't even start on the lower CI because the iteration will
% not converge (that is, there is no lower CI for given values of x and
% df)
if chi2cdf(x,df{:})<1-alpha/2
% lower CI cannot be constructed as it is too close to zero - set to
% NaN
ci=nan;
loopStartIx=2;
end
case 'F'
curPdf=@ncfpdf;
curCdf=@ncfcdf;
curInv=@finv;
abscissLim=[0 2*x;0 5*x];
% similar check as above
if fcdf(x,df{:})<1-alpha/2
% lower CI cannot be constructed as it is too close to zero - set to
% NaN
ci=nan;
loopStartIx=2;
end
case 't'
curPdf=@nctpdf;
curCdf=@nctcdf;
curInv=@tinv;
abscissLim=x+[-4 2;-2 4]*sqrt(abs(x));
otherwise
error('illegal distribution function specified');
end
if prec>.001
warning('results will be inaccurate - set input parameter ''prec'' to a lower value');
end
if doAnimate
fh=figure;
ph0=plot(x,0,'k^');
hold on
set(ph0,'markerfacecolor','k','markersize',6);
ph=[];
ti={'lower CI','upper CI'};
end
% loop twice: first lower ci (but see above), then upper ci
for iIx=loopStartIx:2
% determine initial values: there are probably better ways of estimating
% the limits of ncp for X2 and F pdfs than the guesses below (which work
% best if the X2/F/t value is small)
switch fType
case 'X2'
if iIx==1
% lower CI
ncp=x+curInv(pTarget(iIx),df{:});
else
% upper CI
ncp=5*x;
end
case 'F'
if iIx==1
ncp=x+curInv(pTarget(iIx),df{:});
else
ncp=10*x;
end
case 't'
% as a rough first approximation, assume that lower/upper limit of
% ncp is close to corresponding percentiles of central pdfs
if iIx==1
ncp=x+curInv(pTarget(iIx),df{:});
else
ncp=x-curInv(pTarget(iIx),df{:});
end
end
% interval of first estimates: guessed ncp enlarged by x/2 on either side
ncp=ncp+abs(x)*[-.5 .5];
% p values of current estimates
p=curCdf(x,df{:},ncp);
% deviations of p of current noncentral x pdfs from target p value
deltaP=p-pTarget(iIx);
nIter=1;
if doAnimate
ph=plotPdf(x,ncp,ph,curPdf,df,iIx,nIter,abscissLim,ti);
end
% while desired precision is not reached...
while ~any(abs(deltaP)<=prec)
if all(deltaP>0)
% shift interval to the right by one interval length
ncp=[ncp(2) ncp(2)+abs(diff(ncp))];
elseif all(deltaP<0)
% shift left by one interval length
ncp=[ncp(1)-abs(diff(ncp)) ncp(1)];
else
% halve interval around mean
ncp=mean(ncp)+.25*abs(diff(ncp))*[-1 1];
end
% X2 and F distributions need an extra check: the lower ncp must be >=0
if isPosPdf
if ncp(1)<0
ncp(1)=0;
end
% if both values of ncp are zero here the upper CI is zero, too, so
% stop here
if ~any(ncp)
break
end
end
% p values of current estimates
p=curCdf(x,df{:},ncp);
% deviations of p of current nc x pdfs from target
deltaP=p-pTarget(iIx);
nIter=nIter+1;
if doAnimate
ph=plotPdf(x,ncp,ph,curPdf,df,iIx,nIter,abscissLim,ti);
end
end
% pick border which is closer to the target value
[~,ix]=min(abs(deltaP));
ci(iIx)=ncp(ix);
end
% close figure
if doAnimate
pause(1)
close(fh)
end
% ======================== LOCAL FUNCTION =================================
function ph=plotPdf(x,ncp,ph,pdfH,df,iIx,nIter,abscissLim,ti)
% ** function ph=plotPdf(x,ncp,ph,pdfH,df,iIx,nIter,abscissLim,ti)
% If doAnimate==true, plotPdf plots x (first input arg to ncpci) and
% noncentral pdfs with the noncentrality parameter estimates of each
% iteration step
abscissVal=linspace(abscissLim(iIx,1),abscissLim(iIx,2),200);
if isempty(ph)
ph(1)=plot(abscissVal,pdfH(abscissVal,df{:},ncp(1)),'-');
ph(2)=plot(abscissVal,pdfH(abscissVal,df{:},ncp(2)),'-');
set(ph(1),'color',[.9 .3 .3]);
set(ph(2),'color',[.3 .3 .9]);
else
set(ph(1),'xdata',abscissVal,'ydata',pdfH(abscissVal,df{:},ncp(1)));
set(ph(2),'xdata',abscissVal,'ydata',pdfH(abscissVal,df{:},ncp(2)));
end
title([ti{iIx} ', iteration # ' int2str(nIter)])
% supposedly, in animation mode we would like to be able to follow the
% iterative process with our eyes, so slow things down
drawnow
pause(.1)