-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtribes_env.py
499 lines (394 loc) · 20.3 KB
/
tribes_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import collections
import itertools
import os.path
import tkinter as tk
import gym
import gym.envs.registration
import gym.spaces
import numpy as np
# The 8 actions
UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3
ROTATE_RIGHT = 4
ROTATE_LEFT = 5
LASER = 6
NOOP = 7
"""
In this file, we will implement a Gathering environment where the agents are organized by tribes with
a "Us" versus "Them" mentality.
"""
class GatheringEnv(gym.Env):
# Some basic parameters for the Gathering Game
metadata = {'render.modes': ['human']}
scale = 10 # Used to scale to display during rendering
# Viewbox is to implement partial observable Markov game
viewbox_width = 10
viewbox_depth = 20
padding = max(viewbox_width // 2, viewbox_depth - 1) # essentially 20-1=19
# To help agents distinquish between themselves, the other agents and the apple
agent_colors = [] # input during __init__()
# A function to build the game space from a text file
def _text_to_map(self, text):
m = [list(row) for row in text.splitlines()] # regard "\r", "\n", and "\r\n" as line boundaries
l = len(m[0])
for row in m: # Check for errors in text file
if len(row) != l:
raise ValueError('the rows in the map are not all the same length')
# This essentially add a padding of 20 cells around the region enclosed by the walls or by the
# food (if there is no wall). During rendering you will observe this padded region when a laser
# is fired
def pad(a):
return np.pad(a, self.padding + 1, 'constant')
a = np.array(m).T
self.initial_food = pad(a == 'O').astype(np.int) # Pad 20 around food
self.walls = pad(a == '#').astype(np.int) # Pad 20 around the walls
# This is run when the environment is created
def __init__(self, n_agents=1, agent_tribes=['Vikings'], agent_colors=['red'], map_name='default'):
self.n_agents = n_agents # Set number of agents
# Tribal association - by tribal name and color
self.agent_colors = agent_colors
self.agent_tribes = agent_tribes
self.root = None # For rendering
# Create game space from text file
if not os.path.exists(map_name):
expanded = os.path.join('maps', map_name + '.txt')
if not os.path.exists(expanded):
raise ValueError('map not found: ' + map_name)
map_name = expanded
with open(map_name) as f:
self._text_to_map(f.read().strip()) # This sets up self.initial_food and self.walls
# Populate the rest of environment parameters
self.width = self.initial_food.shape[0]
self.height = self.initial_food.shape[1]
# This is a partial observable Markov game. The agent must be able to know which agents in
# its observation space is US versus THEM. So the observation space provided by GatherEnv will
# contain a stack of 10 frames of 10x20 pixels. These 10 frames identifies:
# 1. Location of Food
# 2. Location of US agents in the viewbox
# 3. Location of THEM agents in the viewbox
# 4. Location of the walls
# 5. TBD (Beam)
# 6. TBD
# 7. TBD
# 8. TBD
# 9. TBD
# 10. TBD
# We will implement only the first 4 frames for now.
self.state_size = self.viewbox_width * self.viewbox_depth * 4
self.observation_space = gym.spaces.MultiDiscrete([[[0, 1]] * self.state_size] * n_agents)
self.action_space = gym.spaces.MultiDiscrete([[0, 7]] * n_agents) # Action space for n agents
self._spec = gym.envs.registration.EnvSpec(**_spec)
self.reset() # Reset environment
self.done = False
# A function to check if the location the agent intends to move into will result in a collision with
# another agent
def _collide(self, agent_index, next_location, current_locations):
for j, current in enumerate(current_locations):
if j is agent_index: # Skip its own current location
continue
if next_location == current: # If the location is occupied
# print("Collide!")
return True
return False
# A function that returns how many agents of same tribe vs different tribes the agent has fired on
def _laser_hits(self, kill_zone, agent_firing):
US = self.agent_tribes[agent_firing] # US is the tribe of the agent that fires the laser
US_hit = 0
THEM_hit = 0
# In case the agent lands on a cell with food, or is tagged
for i, a in enumerate(self.agents):
if i is agent_firing: # Do not count the firing agent
continue
if kill_zone[a]:
if self.agent_tribes[i] is US:
US_hit += 1
else:
THEM_hit += 1
return US_hit, THEM_hit
# A function to take the game one step forward
# Inputs: a list of actions indexed by agent
def _step(self, action_n):
assert len(action_n) == self.n_agents # Error check for action list
# Set action of tagged agents to NOOP
action_n = [NOOP if self.tagged[i] else a for i, a in enumerate(action_n)]
# Initialize variables for movement and for beam
self.beams[:] = 0
movement_n = [(0, 0) for a in action_n]
# Update movement if action is UP, DOWN, RIGHT or LEFT
for i, (a, orientation) in enumerate(zip(action_n, self.orientations)):
if a not in [UP, DOWN, LEFT, RIGHT]:
continue
# a is relative to the agent's orientation, so add the orientation
# before interpreting in the global coordinate system.
#
# This line is really not obvious to read. Replace it with something
# clearer if you have a better idea.
a = (a + orientation) % 4
movement_n[i] = [
(0, -1), # up/forward
(1, 0), # right
(0, 1), # down/backward
(-1, 0), # left
][a]
# The code below updates agent location based on proposed movements
current_locations = [a for a in self.agents]
for i, ((dx, dy), (x, y)) in enumerate(zip(movement_n, self.agents)): # For each agent
if self.tagged[i]: # skip agents that are tagged
continue
next_ = ((x + dx), (y + dy)) # Calculate next location
if self.walls[next_]:
next_ = (x, y) # Do not move into walls
# Do not move into the current location of another agent
if self._collide(i, next_, current_locations):
# find the first possible move that does not result in collision
"""
for move in movement_n:
dx, dy = move
next_ = ((x + dx), (y + dy)) # Calculate possible next location
if not self._collide(i, next_, current_locations):
break
"""
next_ = (x, y) # If all possible moves result in collision, stay in original spot
self.agents[i] = next_
current_locations = [a for a in self.agents] # Need to update current locations
"""
# The code section below updates agent location based on actions that are movements
next_locations = [a for a in self.agents] # Initialize next_locations
# If a key is not found in the dictionary, then instead of a KeyError being thrown, a new entry
# is created.
next_locations_map = collections.defaultdict(list)
for i, ((dx, dy), (x, y)) in enumerate(zip(movement_n, self.agents)): # For each agent
if self.tagged[i]: # skip agents that are tagged
continue
next_ = ((x + dx), (y + dy)) # Calculate next location
if self.walls[next_]:
next_ = (x, y) # Do not move into walls
next_locations[i] = next_
next_locations_map[next_].append(i) # append agent to next_location_map
# If there are more than 1 agent in the same location
for overlappers in next_locations_map.values():
if len(overlappers) > 1:
for i in overlappers:
next_locations[i] = self.agents[i] # return agent to their previous location
self.agents = next_locations # Update agent locations
"""
for i, act in enumerate(action_n):
# initialize agent's laser parameters
self.fire_laser[i] = False
self.kill_zones[i][:] = 0
self.US_tagged[i] = 0
self.THEM_tagged[i] = 0
if act == ROTATE_RIGHT:
self.orientations[i] = (self.orientations[i] + 1) % 4
elif act == ROTATE_LEFT:
self.orientations[i] = (self.orientations[i] - 1) % 4
elif act == LASER:
self.fire_laser[i] = True # agent has fired his laser
laser_field = self._viewbox_slice(i, 5, 20, offset=1)
self.kill_zones[i][laser_field ] = 1 # define the kill zone
self.beams[laser_field ] = 1 # place beam on kill zone
# register how many US vs THEM agents have been fired upon
self.US_tagged[i], self.THEM_tagged[i] = self._laser_hits(self.kill_zones[i], i)
# Prepare obs_n, reward_n, done_n and info_n to be returned
obs_n = self.state_n # obs_n is self.state_n
reward_n = [0 for _ in range(self.n_agents)]
done_n = [self.done] * self.n_agents
info_n = [None for _ in range(self.n_agents)] # initialize agent info
# This is really shitty code writing. If agent lands on a food cell, that cell is set to -15.
# Then for each subsequent step, it is incremented by 1 until it reaches 1 again.
# self.initial_food is the game space created from the text file whereby the cell with food
# is given the value of 1, every other cell has the value of 0.
self.food = (self.food + self.initial_food).clip(max=1)
# In case the agent lands on a cell with food, or is tagged
for i, a in enumerate(self.agents):
if self.tagged[i]:
continue
if self.food[a] == 1:
self.food[a] = -15 # Food is respawned every 15 steps once it has been consumed
reward_n[i] = 1 # Agent is given reward of 1
if self.beams[a]:
self.tagged[i] = 25 # If agent is tagged, it is removed from the game for 25 steps
self.agents[i] = (-1,-1) # It is place in Nirvana
# Respawn agent after 25 steps; tagged should always be between 0 to 25
for i, tag in enumerate(self.tagged):
if tag > 1: # agent has been tagged
self.tagged[i] = tag - 1 # count down tagged counter (from 25)
elif tag == 1: # When tagged is 1, it is time to respawn agent i
# But need to check there is no agent at the respawn location
current_locations = [a for a in self.agents]
next_ = self.spawn_points[i]
if self._collide(i, next_, current_locations):
self.agents[i] = (-1,-1) # Stay in Nirvana if there is collision
else:
self.agents[i] = next_ # Otherwise, respawn
self.orientations[i] = UP
self.tagged[i] = 0
info_n = [(self.tagged[i], self.fire_laser[i], self.US_tagged[i], self.THEM_tagged[i]) \
for i in range(self.n_agents)]
return obs_n, reward_n, done_n, info_n
# Generate slice(tuple) to slice out observation space for agents
def _viewbox_slice(self, agent_index, width, depth, offset=0):
# These are inputs for generating an observation space for the agent
# Note that if width is 10, the agent can perceive 5 pixels to the left,
# 1 pixel directly in front of itself, and 4 pixels to its right.
left = width // 2
right = left if width % 2 == 0 else left + 1
x, y = self.agents[agent_index]
# This is really hard-to-read code. Essentially, it generates the observation
# spaces for an agent in all 4 orientations, then only return the one indexed
# by its current orientation.
# Note: itertools.starmap maps the orientation-indexed tuple to slice()
return tuple(itertools.starmap(slice, (
((x - left, x + right), (y - offset, y - offset - depth, -1)), # up
((x + offset, x + offset + depth), (y - left, y + right)), # right
((x + left, x - right, -1), (y + offset, y + offset + depth)), # down
((x - offset, x - offset - depth, -1), (y + left, y - right, -1)), # left
)[self.orientations[agent_index]]))
# state_n (next state) is a property object. So this function is run everytime state_n is
# called as a varaiable.
@property
def state_n(self):
food = self.food.clip(min=0) # Mark the food's location
# Create game spaces for agent locating US vs THEM agents
US = [np.zeros_like(self.food) for i in range(self.n_agents)]
THEM = [np.zeros_like(self.food) for i in range(self.n_agents)]
# Zero out next states for the agents
s = np.zeros((self.n_agents, self.viewbox_width, self.viewbox_depth, 4))
# Enumerate index, (agent orientation, agent location) by agent index
for i, (orientation, (x, y)) in enumerate(zip(self.orientations, self.agents)):
if self.tagged[i]:
continue # Skip if agent has been tagged out of the game
# go through the list of agents
for j, loc in enumerate(self.agents):
if not self.tagged[j]: # if the agent is in the game (not tagged out)
# compare the agent's tribe of the agent against that of the observing agent
if self.agent_tribes[i] == self.agent_tribes[j]:
US[i][loc] = 1 # Mark US agent's location
# For debug only
# print ('Agent{} of Tribe {} is US of Tribe {}'.format(j, self.agent_tribes[j], self.agent_tribes[i]))
else:
THEM[i][loc] = 1 # Mark THEM agent's location
# For debug only
# print ('Agent{} Tribe {} is THEM of Tribe{}'.format(j, self.agent_tribes[j], self.agent_tribes[i]))
# If agent is not tagged, ....
# Construct the full state for the game, which consists of:
# 1. Location of Food
# 2. Location of US agents in the viewbox
# 3. Location of THEM agents in the viewbox
# 4. Location of the walls
full_state = np.stack([food, US[i], THEM[i], self.walls], axis=-1)
# full_state[x, y, 2] = 0 # Zero out the agent's location ???
# Create observation space for learning agent using _viewbox_slice()
xs, ys = self._viewbox_slice(i, self.viewbox_width, self.viewbox_depth)
observation = full_state[xs, ys, :]
# Orient the observation space correctly
s[i] = observation if orientation in [UP, DOWN] else observation.transpose(1, 0, 2)
return s.reshape((self.n_agents, self.state_size)) # Return the agents' observations
# To reset the environment
def _reset(self):
# Build food stash
self.food = self.initial_food.copy()
# Rebuild the wall (by subtracting padding from self.walls - very weird implementation!!!)
# Essentially, think of a much larger game area (+20 cells on each side) surrounding the
# walled region.
p = self.padding
self.walls[p:-p, p] = 1
self.walls[p:-p, -p - 1] = 1
self.walls[p, p:-p] = 1
self.walls[-p - 1, p:-p] = 1
self.beams = np.zeros_like(self.food) # self.beams region is as big as self.food (weird!)
# Set up agent parameters
# The agents are spawned at the right upper corner of the game area, one next to the other
self.agents = [(i + self.padding + 1, self.padding + 1) for i in range(self.n_agents)]
self.spawn_points = list(self.agents)
self.orientations = [UP for _ in self.agents] # Orientation = UP
# Agent's Laser parameters
self.tagged = [0 for _ in self.agents] # Tagged = False
self.fire_laser = [False for _ in self.agents] # Fire Laser = False
self.kill_zones = [np.zeros_like(self.food) for i in range(self.n_agents)] # laser kill zones
self.US_tagged= [0 for _ in self.agents] # agents of same tribe tagged = 0
self.THEM_tagged= [0 for _ in self.agents] # agents of different tribes tagged = 0
return self.state_n # Since state_n is a property object, so it will call function _state_n()
# To close the rendering window
def _close_view(self):
# If rendering window is active, close it
if self.root:
self.root.destroy()
self.root = None
self.canvas = None
self.done = True # The episode is done
# TO render the game
def _render(self, mode='human', close=False):
if close:
self._close_view()
return
# The canvas is defined by the imported map with a padding of 20 cells around it
canvas_width = self.width * self.scale
canvas_height = self.height * self.scale
if self.root is None:
self.root = tk.Tk()
self.root.title('Gathering')
self.root.protocol('WM_DELETE_WINDOW', self._close_view)
self.canvas = tk.Canvas(self.root, width=canvas_width, height=canvas_height)
self.canvas.pack()
self.canvas.delete(tk.ALL)
self.canvas.create_rectangle(0, 0, canvas_width, canvas_height, fill='black')
def fill_cell(x, y, color):
self.canvas.create_rectangle(
x * self.scale,
y * self.scale,
(x + 1) * self.scale,
(y + 1) * self.scale,
fill=color,
)
# Refresh the canvas by placing pixels for laser beams, food units and walls
for x in range(self.width):
for y in range(self.height):
if self.beams[x, y] == 1:
fill_cell(x, y, 'yellow')
if self.food[x, y] == 1:
fill_cell(x, y, 'green')
if self.walls[x, y] == 1:
fill_cell(x, y, 'grey')
# Place the agents onto the canvas
for i, (x, y) in enumerate(self.agents):
if self.tagged[i] is 0: # provided agent i has not been tagged
fill_cell(x, y, self.agent_colors[i])
if True:
# Debug view: see the first player's viewbox perspective.
p1_state = self.state_n[0].reshape(self.viewbox_width, self.viewbox_depth, 4)
for x in range(self.viewbox_width):
for y in range(self.viewbox_depth):
food, us, them, wall = p1_state[x, y]
assert sum((food, us, them, wall)) <= 1
y_ = self.viewbox_depth - y - 1
if food:
fill_cell(x, y_, 'green')
elif us:
fill_cell(x, y_, 'cyan')
elif them:
fill_cell(x, y_, 'red')
elif wall:
fill_cell(x, y_, 'gray')
self.canvas.create_rectangle(
0,
0,
(self.viewbox_width + 1)* self.scale,
(self.viewbox_depth + 1) * self.scale,
outline='blue',
)
self.root.update()
# To close the environment
def _close(self):
self._close_view()
# To delete the environment
def __del__(self):
self.close()
_spec = {
'id': 'Gathering-Luke-v063',
'entry_point': GatheringEnv,
'reward_threshold': 500, # The environment threshold at 100 appears to be too low
}
gym.envs.registration.register(**_spec)