-
Notifications
You must be signed in to change notification settings - Fork 13
/
base_model.py
92 lines (78 loc) · 3.28 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import torch
import sys
class BaseModel(torch.nn.Module):
def name(self):
return 'BaseModel'
def initialize(self, opt):
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.isTrain = opt.isTrain
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
def set_input(self, input):
self.input = input
def forward(self):
pass
# used in test time, no backprop
def test(self):
pass
def get_image_paths(self):
pass
def optimize_parameters(self):
pass
def get_current_visuals(self):
return self.input
def get_current_errors(self):
return {}
def save(self, label):
pass
# helper saving function that can be used by subclasses
def save_network(self, network, network_label, epoch_label, gpu_ids):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
network.cuda()
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label, save_dir=''):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
print (save_filename)
if not save_dir:
save_dir = self.save_dir
save_path = os.path.join(save_dir, save_filename)
if not os.path.isfile(save_path):
print('%s not exists yet!' % save_path)
if network_label == 'G':
raise('Generator must exist!')
else:
#network.load_state_dict(torch.load(save_path))
network.load_state_dict(torch.load(save_path))
# except:
# pretrained_dict = torch.load(save_path)
# model_dict = network.state_dict()
# try:
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# network.load_state_dict(pretrained_dict)
# if self.opt.verbose:
# print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
# except:
# print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label)
# for k, v in pretrained_dict.items():
# if v.size() == model_dict[k].size():
# model_dict[k] = v
#
# if sys.version_info >= (3,0):
# not_initialized = set()
# else:
# from sets import Set
# not_initialized = Set()
#
# for k, v in model_dict.items():
# if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
# not_initialized.add(k.split('.')[0])
#
# print(sorted(not_initialized))
# network.load_state_dict(model_dict)
def update_learning_rate():
pass