forked from mxgmn/WaveFunctionCollapse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.cs
229 lines (191 loc) · 7.19 KB
/
Model.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
The MIT License(MIT)
Copyright(c) mxgmn 2016.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.
*/
using System;
abstract class Model
{
protected bool[][] wave;
protected int[][][] propagator;
int[][][] compatible;
protected int[] observed;
(int, int)[] stack;
int stacksize, observedSoFar;
protected int MX, MY, T, N;
protected bool periodic;
protected double[] weights;
double[] weightLogWeights, distribution;
int[] sumsOfOnes;
double sumOfWeights, sumOfWeightLogWeights, startingEntropy;
double[] sumsOfWeights, sumsOfWeightLogWeights, entropies;
public enum Heuristic { Entropy, MRV, Scanline };
Heuristic heuristic;
protected Model(int width, int height, int N, bool periodic, Heuristic heuristic)
{
MX = width;
MY = height;
this.N = N;
this.periodic = periodic;
this.heuristic = heuristic;
}
void Init()
{
wave = new bool[MX * MY][];
compatible = new int[wave.Length][][];
for (int i = 0; i < wave.Length; i++)
{
wave[i] = new bool[T];
compatible[i] = new int[T][];
for (int t = 0; t < T; t++) compatible[i][t] = new int[4];
}
distribution = new double[T];
observed = new int[MX * MY];
weightLogWeights = new double[T];
sumOfWeights = 0;
sumOfWeightLogWeights = 0;
for (int t = 0; t < T; t++)
{
weightLogWeights[t] = weights[t] * Math.Log(weights[t]);
sumOfWeights += weights[t];
sumOfWeightLogWeights += weightLogWeights[t];
}
startingEntropy = Math.Log(sumOfWeights) - sumOfWeightLogWeights / sumOfWeights;
sumsOfOnes = new int[MX * MY];
sumsOfWeights = new double[MX * MY];
sumsOfWeightLogWeights = new double[MX * MY];
entropies = new double[MX * MY];
stack = new (int, int)[wave.Length * T];
stacksize = 0;
}
public bool Run(int seed, int limit)
{
if (wave == null) Init();
Clear();
Random random = new Random(seed);
for (int l = 0; l < limit || limit < 0; l++)
{
int node = NextUnobservedNode(random);
if (node >= 0)
{
Observe(node, random);
bool success = Propagate();
if (!success) return false;
}
else
{
for (int i = 0; i < wave.Length; i++) for (int t = 0; t < T; t++) if (wave[i][t]) { observed[i] = t; break; }
return true;
}
}
return true;
}
protected int NextUnobservedNode(Random random)
{
if (heuristic == Heuristic.Scanline)
{
for (int i = observedSoFar; i < wave.Length; i++)
{
if (!periodic && (i % MX + N > MX || i / MX + N > MY)) continue;
if (sumsOfOnes[i] > 1)
{
observedSoFar = i + 1;
return i;
}
}
return -1;
}
double min = 1E+4;
int argmin = -1;
for (int i = 0; i < wave.Length; i++)
{
if (!periodic && (i % MX + N > MX || i / MX + N > MY)) continue;
int remainingValues = sumsOfOnes[i];
double entropy = heuristic == Heuristic.Entropy ? entropies[i] : remainingValues;
if (remainingValues > 1 && entropy <= min)
{
double noise = 1E-6 * random.NextDouble();
if (entropy + noise < min)
{
min = entropy + noise;
argmin = i;
}
}
}
return argmin;
}
void Observe(int node, Random random)
{
bool[] w = wave[node];
for (int t = 0; t < T; t++) distribution[t] = w[t] ? weights[t] : 0.0;
int r = distribution.Random(random.NextDouble());
for (int t = 0; t < T; t++) if (w[t] != (t == r)) Ban(node, t);
}
protected bool Propagate()
{
while (stacksize > 0)
{
(int i1, int t1) = stack[stacksize - 1];
stacksize--;
int x1 = i1 % MX;
int y1 = i1 / MX;
for (int d = 0; d < 4; d++)
{
int x2 = x1 + dx[d];
int y2 = y1 + dy[d];
if (!periodic && (x2 < 0 || y2 < 0 || x2 + N > MX || y2 + N > MY)) continue;
if (x2 < 0) x2 += MX;
else if (x2 >= MX) x2 -= MX;
if (y2 < 0) y2 += MY;
else if (y2 >= MY) y2 -= MY;
int i2 = x2 + y2 * MX;
int[] p = propagator[d][t1];
int[][] compat = compatible[i2];
for (int l = 0; l < p.Length; l++)
{
int t2 = p[l];
int[] comp = compat[t2];
comp[d]--;
if (comp[d] == 0) Ban(i2, t2);
}
}
}
return sumsOfOnes[0] > 0;
}
protected void Ban(int i, int t)
{
wave[i][t] = false;
int[] comp = compatible[i][t];
for (int d = 0; d < 4; d++) comp[d] = 0;
stack[stacksize] = (i, t);
stacksize++;
sumsOfOnes[i] -= 1;
sumsOfWeights[i] -= weights[t];
sumsOfWeightLogWeights[i] -= weightLogWeights[t];
double sum = sumsOfWeights[i];
entropies[i] = Math.Log(sum) - sumsOfWeightLogWeights[i] / sum;
}
protected virtual void Clear()
{
for (int i = 0; i < wave.Length; i++)
{
for (int t = 0; t < T; t++)
{
wave[i][t] = true;
for (int d = 0; d < 4; d++) compatible[i][t][d] = propagator[opposite[d]][t].Length;
}
sumsOfOnes[i] = weights.Length;
sumsOfWeights[i] = sumOfWeights;
sumsOfWeightLogWeights[i] = sumOfWeightLogWeights;
entropies[i] = startingEntropy;
observed[i] = -1;
}
observedSoFar = 0;
}
public abstract System.Drawing.Bitmap Graphics();
protected static int[] dx = { -1, 0, 1, 0 };
protected static int[] dy = { 0, 1, 0, -1 };
static int[] opposite = { 2, 3, 0, 1 };
}