-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvaluator.py
86 lines (74 loc) · 4.1 KB
/
Evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import math
from numpy import percentile
import pandas as pd
import matplotlib.pyplot as plt
def evaluate(dataset_name, dataset_path, output_path):
dataframe = pd.DataFrame(pd.read_csv(dataset_path, sep=";"))
elapsed_time = dataframe['time_difference'].sum()
total_data_income = (dataframe['total_volume'].sum())/(10**3) # KB
traffic_mean_vol = (total_data_income/elapsed_time) # KB/s
traffic_mean = total_data_income/len(dataframe) # KB per user
dataframe['total_volume'] = dataframe['total_volume'].apply(lambda x: x/(10**3)) # KB
dataframe['ratio_vol_td'] = dataframe['ratio_vol_td'].apply(lambda x: x/(10**3)) # KB/s
dataframe.insert(loc=0, column='id', value=range(1, len(dataframe) + 1))
# Sigma over exchanged data
dataframe['margin_to_mean'] = dataframe['total_volume']
dataframe['margin_to_mean'] = dataframe['margin_to_mean'].apply(lambda x: (x - traffic_mean))
dataframe['squared_margin_to_mean'] = dataframe['margin_to_mean'].apply(lambda x: (x - traffic_mean)**2)
sigma_data = math.sqrt(dataframe['squared_margin_to_mean'].sum()/(len(dataframe)-1))
# Sigma over traffic volume
dataframe['margin_to_mean_vol'] = dataframe['ratio_vol_td']
dataframe['margin_to_mean_vol'] = dataframe['ratio_vol_td'].apply(lambda x: (x - traffic_mean_vol))
dataframe['squared_margin_to_mean_vol'] = dataframe['margin_to_mean_vol'].apply(lambda x: (x - traffic_mean_vol) ** 2)
sigma_vol = math.sqrt(dataframe['squared_margin_to_mean_vol'].sum() / (len(dataframe) - 1))
# Percentile Traffic
q25, q75 = percentile(dataframe['ratio_vol_td'], 25), percentile(dataframe['ratio_vol_td'], 75)
inter_quartile_range = q75 - q25
# calculate the outlier cutoff
cut_off = inter_quartile_range * 1.5
lower, upper = q25 - cut_off, q75 + cut_off
# identify outliers
traffic_outliers = [x for x in dataframe['ratio_vol_td'] if x < lower or x > upper]
attackers_ip_traffic = list()
for val in traffic_outliers:
attackers_ip_traffic.append(str(dataframe.loc[dataframe['ratio_vol_td'] == val, 'group']))
attackers_ip_traffic.reverse()
# Percentile Data
q25, q75 = percentile(dataframe['total_volume'], 25), percentile(dataframe['total_volume'], 75)
inter_quartile_range = q75 - q25
# calculate the outlier cutoff
cut_off = inter_quartile_range * 1.5
lower, upper = q25 - cut_off, q75 + cut_off
# identify outliers
data_outliers = [x for x in dataframe['total_volume'] if x < lower or x > upper]
attackers_ip_data = list()
for val in data_outliers:
attackers_ip_data.append(str(dataframe.loc[dataframe['total_volume'] == val, 'group']))
attackers_ip_data.reverse()
fig, ax = plt.subplots(figsize=(14, 6))
dataframe.plot('id', 'total_volume', kind='scatter', linewidth='0.5', ax=ax, label='Data exchanged')
plt.axhline(traffic_mean, color='r', label='Mean')
plt.axhline(sigma_data, color='g', label='Sigma')
plt.xlabel('IP ID')
plt.ylabel('KB')
plt.legend()
plt.title("Data Analysis")
plt.savefig(output_path + dataset_name + "-data_analysis.png", dpi=300)
fig, ax = plt.subplots(figsize=(14, 6))
dataframe.plot('id', 'ratio_vol_td', kind='scatter', linewidth='0.5', ax=ax, label='Volume per second')
plt.axhline(traffic_mean_vol, color='r', label='Mean')
plt.axhline(sigma_vol, color='g', label='Sigma')
plt.xlabel('IP ID')
plt.ylabel('KB/s')
plt.legend()
plt.title("Traffic Volume Analysis")
plt.savefig(output_path + dataset_name + "-volume_analysis.png", dpi=300)
file = open(output_path + dataset_name + "-report", 'a+')
file.write("Data outliers (" + str(len(data_outliers)) + "):\n")
for i in range(len(attackers_ip_data)):
file.write(str(attackers_ip_data[i]).split("\n")[0] + "-->" + str(data_outliers[i]) + "\n")
file.write("Traffic outliers:(" + str(len(traffic_outliers)) + "): \n")
for i in range(len(attackers_ip_traffic)):
file.write(str(attackers_ip_traffic[i]).split("\n")[0] + "-->" + str(traffic_outliers[i]) + "\n")
file.close()
dataframe.to_csv(output_path + dataset_name + "-indexed", index=False)