-
Notifications
You must be signed in to change notification settings - Fork 2
/
crossing.m
106 lines (91 loc) · 3.41 KB
/
crossing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
function [ind,t0,s0,t0close,s0close] = crossing(S,t,level,imeth)
% CROSSING find the crossings of a given level of a signal
% ind = CROSSING(S) returns an index vector ind, the signal
% S crosses zero at ind or at between ind and ind+1
% [ind,t0] = CROSSING(S,t) additionally returns a time
% vector t0 of the zero crossings of the signal S. The crossing
% times are linearly interpolated between the given times t
% [ind,t0] = CROSSING(S,t,level) returns the crossings of the
% given level instead of the zero crossings
% ind = CROSSING(S,[],level) as above but without time interpolation
% [ind,t0] = CROSSING(S,t,level,par) allows additional parameters
% par = {'none'|'linear'}.
% With interpolation turned off (par = 'none') this function always
% returns the value left of the zero (the data point thats nearest
% to the zero AND smaller than the zero crossing).
%
% [ind,t0,s0] = ... also returns the data vector corresponding to
% the t0 values.
%
% [ind,t0,s0,t0close,s0close] additionally returns the data points
% closest to a zero crossing in the arrays t0close and s0close.
%
% This version has been revised incorporating the good and valuable
% bugfixes given by users on Matlabcentral. Special thanks to
% Howard Fishman, Christian Rothleitner, Jonathan Kellogg, and
% Zach Lewis for their input.
% Steffen Brueckner, 2002-09-25
% Steffen Brueckner, 2007-08-27 revised version
% Copyright (c) Steffen Brueckner, 2002-2007
% brueckner@sbrs.net
% check the number of input arguments
error(nargchk(1,4,nargin));
% check the time vector input for consistency
if nargin < 2 || isempty(t)
% if no time vector is given, use the index vector as time
t = 1:length(S);
elseif length(t) ~= length(S)
% if S and t are not of the same length, throw an error
error('t and S must be of identical length!');
end
% check the level input
if nargin < 3
% set standard value 0, if level is not given
level = 0;
end
% check interpolation method input
if nargin < 4
imeth = 'linear';
end
% make row vectors
t = t(:)';
S = S(:)';
% always search for zeros. So if we want the crossing of
% any other threshold value "level", we subtract it from
% the values and search for zeros.
S = S - level;
% first look for exact zeros
ind0 = find( S == 0 );
% then look for zero crossings between data points
S1 = S(1:end-1) .* S(2:end);
ind1 = find( S1 < 0 );
% bring exact zeros and "in-between" zeros together
ind = sort([ind0 ind1]);
% and pick the associated time values
t0 = t(ind);
s0 = S(ind);
if strcmp(imeth,'linear')
% linear interpolation of crossing
for ii=1:length(t0)
if abs(S(ind(ii))) > eps(S(ind(ii)))
% interpolate only when data point is not already zero
NUM = (t(ind(ii)+1) - t(ind(ii)));
DEN = (S(ind(ii)+1) - S(ind(ii)));
DELTA = NUM / DEN;
t0(ii) = t0(ii) - S(ind(ii)) * DELTA;
% I'm a bad person, so I simply set the value to zero
% instead of calculating the perfect number ;)
s0(ii) = 0;
end
end
end
% Addition:
% Some people like to get the data points closest to the zero crossing,
% so we return these as well
% % [CC,II] = min(abs([S(ind-1) ; S(ind) ; S(ind+1)]),[],1);
% % ind2 = ind + (II-2); %update indices
len = length(t) ;
[CC,II] = min(abs([S(max(ind-1,1)) ; S(ind) ; S(min(ind+1,len))]),[],1);
ind2 = max(ind + (II-2),1); %update indices
t0close = t(ind2);
s0close = S(ind2);