forked from dsadigh/driving-interactions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrajectory.py
executable file
·62 lines (60 loc) · 2.19 KB
/
trajectory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import theano as th
import theano.tensor as tt
import utils
import numpy as np
import feature
import lane
class Trajectory(object):
def __init__(self, T, dyn):
self.dyn = dyn
self.T = T
self.x0 = utils.vector(dyn.nx)
self.u = [utils.vector(dyn.nu) for t in range(self.T)]
self.x = []
z = self.x0
for t in range(T):
z = dyn(z, self.u[t])
self.x.append(z)
self.next_x = th.function([], self.x[0])
def tick(self):
self.x0.set_value(self.next_x())
for t in range(self.T-1):
self.u[t].set_value(self.u[t+1].get_value())
self.u[self.T-1].set_value(np.zeros(self.dyn.nu))
def gaussian(self, height=.07, width=.03):
@feature.feature
def f(t, x, u):
d = (self.x[t][0]-x[0], self.x[t][1]-x[1])
theta = self.x[t][2]
dh = tt.cos(theta)*d[0]+tt.sin(theta)*d[1]
dw = -tt.sin(theta)*d[0]+tt.cos(theta)*d[1]
return tt.exp(-0.5*(dh*dh/(height*height)+dw*dw/(width*width)))
return f
def reward(self, reward):
r = [reward(t, self.x[t], self.u[t]) for t in range(self.T)]
return sum(r)
"""
g = [utils.grad(r[t], self.x[t]) for t in range(self.T)]
for t in reversed(range(self.T-1)):
g[t] = g[t]+tt.dot(g[t+1], utils.jacobian(self.x[t+1], self.x[t]))
for t in range(self.T):
g[t] = tt.dot(g[t], utils.jacobian(self.x[t], self.u[t]))+utils.grad(r[t], self.u[t], constants=[self.x[t]])
return sum(r), {self.u[t]: g[t] for t in range(self.T)}
"""
if __name__ == '__main__':
from dynamics import CarDynamics
import math
dyn = CarDynamics(0.1)
traj = Trajectory(5, dyn)
l = lane.StraightLane([0., -1.], [0., 1.], .1)
reward = feature.speed()+l.feature()#+feature.speed()
r = traj.reward(reward)
#traj.x0.value = np.asarray([0., 0., math.pi/2, 1.])
traj.x0.set_value([0.1, 0., math.pi/2, 1.])
optimizer = utils.Maximizer(r, traj.u)
import time
t = time.time()
for i in range(1):
optimizer.maximize(bounds=[(-1., 1.), (-2, 2.)])
print (time.time()-t)/1.
print [u.get_value() for u in traj.u]