-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathengine.py
126 lines (98 loc) · 4.17 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
"""
import math
import os
import sys
import torch
import torch.distributed as dist
from tqdm import tqdm
from typing import Iterable
import utils.misc as utils
import utils.loss_utils as loss_utils
import utils.eval_utils as eval_utils
from utils.box_utils import xywh2xyxy
def train_one_epoch(args, model: torch.nn.Module, data_loader: Iterable,
optimizer: torch.optim.Optimizer, device: torch.device,
epoch: int, max_norm: float = 0):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for batch in metric_logger.log_every(data_loader, print_freq, header):
img_data, text_data, target = batch
# copy to GPU
img_data = img_data.to(device)
text_data = text_data.to(device)
target = target.to(device)
# model forward
output = model(img_data, text_data)
loss_dict = loss_utils.trans_vg_loss(output, target)
losses = sum(loss_dict[k] for k in loss_dict.keys())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {k: v
for k, v in loss_dict_reduced.items()}
losses_reduced_unscaled = sum(loss_dict_reduced_unscaled.values())
loss_value = losses_reduced_unscaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(loss=loss_value, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def validate(args, model: torch.nn.Module, data_loader: Iterable, device: torch.device):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Eval:'
for batch in metric_logger.log_every(data_loader, 10, header):
img_data, text_data, target = batch
batch_size = img_data.tensors.size(0)
# copy to GPU
img_data = img_data.to(device)
text_data = text_data.to(device)
target = target.to(device)
pred_boxes = model(img_data, text_data)
miou, accu = eval_utils.trans_vg_eval_val(pred_boxes, target)
metric_logger.update_v2('miou', torch.mean(miou), batch_size)
metric_logger.update_v2('accu', accu, batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return stats
@torch.no_grad()
def evaluate(args, model: torch.nn.Module, data_loader: Iterable, device: torch.device):
model.eval()
pred_box_list = []
gt_box_list = []
for _, batch in enumerate(tqdm(data_loader)):
img_data, text_data, target = batch
batch_size = img_data.tensors.size(0)
# copy to GPU
img_data = img_data.to(device)
text_data = text_data.to(device)
target = target.to(device)
output = model(img_data, text_data)
pred_box_list.append(output.cpu())
gt_box_list.append(target.cpu())
pred_boxes = torch.cat(pred_box_list, dim=0)
gt_boxes = torch.cat(gt_box_list, dim=0)
total_num = gt_boxes.shape[0]
accu_num = eval_utils.trans_vg_eval_test(pred_boxes, gt_boxes)
result_tensor = torch.tensor([accu_num, total_num]).to(device)
torch.cuda.synchronize()
dist.all_reduce(result_tensor)
accuracy = float(result_tensor[0]) / float(result_tensor[1])
return accuracy