-
Notifications
You must be signed in to change notification settings - Fork 0
/
Digits_Keras_4&9_v0.1.py
129 lines (102 loc) · 3.93 KB
/
Digits_Keras_4&9_v0.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import pandas as pd
import numpy as np
from PIL import Image,ImageFilter
import os
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.utils import np_utils
from keras.callbacks import ReduceLROnPlateau
from keras.models import Model
ruta = os.getcwd()
ruta_train = ruta + '/Data/train.csv'
ruta_test = ruta + '/Data/test.csv'
data = pd.read_csv(ruta_train)
# Obtenemos solo las filas de los 4 y los 9
data_filter = data [(data['label'] == 4) | (data['label'] == 9)]
# 0 => 4
# 1 => 9
data_num = data_filter.label.values
for ind,_val in enumerate(data_num):
if _val == 4:
data_num[ind] = 0
else:
data_num[ind] = 1
data_filter = data_filter[data_filter.columns[1:]]
data_filter['label'] = data_num
x_train = data_filter[data_filter.columns[:-1]].values
y_train = data_filter[data_filter.columns[-1]].values
# Normalizamos las imagenes
x_train = x_train/255.0
# Reestructuramos la estructura de la imagen para la NN
x_train = x_train.reshape(x_train.shape[0],28,28,1)
# Vectorizamos las salidas
y_train = np_utils.to_categorical(y_train,2)
"""
Arquitectura Red Neuronal
"""
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu', input_shape = (28,28,1)))
model.add(PReLU())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
# model.add(Dense(10, activation = "softmax"))
model.add(Dense(2, activation='sigmoid'))
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "binary_crossentropy", metrics=["accuracy"])
# funcion para modificar el factor de aprendizaje en funcion de su evolucion
learning_rate_reduction = ReduceLROnPlateau(monitor='acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
# Data Augmentation
datagen = ImageDataGenerator(
rotation_range=15,
zoom_range=0.2,
width_shift_range=0.1,
height_shift_range=0.1)
datagen.fit(x_train)
epochs = 30 #
batch_size = 86
history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size),
epochs = epochs,
verbose = 1,
# steps_per_epoch = x_train.shape[0] // batch_size,
steps_per_epoch = 100,
callbacks = [learning_rate_reduction])
# Persistimos el modelo
model.save('Model_newNN_GPU_4&9_v7.0.h5')
# Epoch 60/60
# 1000/1000 [==============================] - 24s 24ms/step - loss: 8.3809e-04 - acc: 0.9999