-
Notifications
You must be signed in to change notification settings - Fork 0
/
Digits_Keras_v10.0.py
135 lines (100 loc) · 3.95 KB
/
Digits_Keras_v10.0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Aumentamos el dataset con los digitos que se obtienen del dataset MNIST de Keras
trampa 1.0
"""
import pandas as pd
import numpy as np
from PIL import Image,ImageFilter
import os
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.utils import np_utils
from keras.callbacks import ReduceLROnPlateau
from keras.models import Model
from keras.layers.advanced_activations import PReLU
from keras.datasets import mnist
ruta = os.getcwd()
ruta_train = ruta + '/Data/train.csv'
ruta_test = ruta + '/Data/test.csv'
data = pd.read_csv(ruta_train)
x_train = data[data.columns[1:]].values
y_train = data[data.columns[0]].values
(x_train2,y_train2),(x_train3,y_train3)=mnist.load_data()
x_train2 = x_train2.reshape(x_train2.shape[0],28,28,1)
x_train3 = x_train3.reshape(x_train3.shape[0],28,28,1)
x_train23 = np.concatenate([x_train2,x_train3])
# Normalizamos las imagenes
x_train = x_train/255.0
# Reestructuramos la estructura de la imagen para la NN
x_train = x_train.reshape(x_train.shape[0],28,28,1)
# Vectorizamos las salidas
y_train = np_utils.to_categorical(y_train,10)
y_train2 = np_utils.to_categorical(y_train2,10)
y_train3 = np_utils.to_categorical(y_train3,10)
y_train23 = np.concatenate([y_train2,y_train3])
"""
Arquitectura Red Neuronal
"""
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu', input_shape = (28,28,1)))
model.add(PReLU())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(PReLU())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
# funcion para modificar el factor de aprendizaje en funcion de su evolucion
learning_rate_reduction = ReduceLROnPlateau(monitor='acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
# Data Augmentation
datagen = ImageDataGenerator(
rotation_range=10,
zoom_range=0.1,
width_shift_range=0.1,
height_shift_range=0.1)
datagen.fit(x_train)
epochs = 50 #
batch_size = 86
history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size),
epochs = epochs,
verbose = 1,
# steps_per_epoch = x_train.shape[0] // batch_size,
steps_per_epoch = 1000,
callbacks = [learning_rate_reduction])
# Persistimos el modelo
model.save('Model_newNN_GPU_v10.0.40.h5')