-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_label.py
76 lines (62 loc) · 2.67 KB
/
voc_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test'), ('2007', 'trainval')]
classes = ["garbage","trash","bottle"]
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
if bb[0]>1 or bb[1]>1 or bb[2]>1 or bb[3]>1 :
raise RuntimeError(f'{image_id} bbox out of range >1')
if bb[0]<0 or bb[1]<0 or bb[2]<0 or bb[3]<0 :
raise RuntimeError(f'{image_id} bbox out of range <0')
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
image_names = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
image_ids = list()
for image_name in image_names:
if image_name.endswith('.jpg') or image_name.endswith('.png'):
image_ids.append(image_name[:-4])
elif image_name.endswith('.jpeg'):
image_ids.append(image_name[:-5])
else:
print(f'- [x] Not correct file format: {image_name}')
raise ('error')
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for i in range(len(image_ids)):
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s\n'%(wd, year, image_names[i]))
convert_annotation(year, image_ids[i])
list_file.close()
print(f'- [x] {year}_{image_set} : {len(image_names)}')
print(f'- [Done] we change the xml_file(pascal VOC) to txt_file(YOLO) labels and create dataset list.')