forked from jiaxi-jiang/FBCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_test_fbcnn_color_real.py
105 lines (86 loc) · 3.73 KB
/
main_test_fbcnn_color_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os.path
import logging
import numpy as np
from datetime import datetime
from collections import OrderedDict
import torch
import cv2
from utils import utils_logger
from utils import utils_image as util
import requests
def main():
testset_name = 'Real' # folder name of real images
n_channels = 3 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
testsets = 'testsets'
results = 'test_results'
do_flexible_control = True
QF_control = [5,10,30,50,70,90] # adjust qf as input to provide different results
result_name = testset_name + '_' + model_name[:-4]
L_path = os.path.join(testsets, testset_name)
E_path = os.path.join(results, result_name) # E_path, for Estimated images
util.mkdir(E_path)
model_pool = 'model_zoo' # fixed
model_path = os.path.join(model_pool, model_name)
if os.path.exists(model_path):
print(f'loading model from {model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
print(f'downloading model {model_path}')
open(model_path, 'wb').write(r.content)
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
border = 0
# ----------------------------------------
# load model
# ----------------------------------------
from models.network_fbcnn import FBCNN as net
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
L_paths = util.get_image_paths(L_path)
for idx, img in enumerate(L_paths):
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
img_L = util.imread_uint(img, n_channels=n_channels)
img_L = util.uint2tensor4(img_L)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
#img_E,QF = model(img_L, torch.tensor([[0.6]]))
img_E,QF = model(img_L)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
logger.info('predicted quality factor: {:d}'.format(round(float(QF*100))))
util.imsave(img_E, os.path.join(E_path, img_name+'.png'))
if do_flexible_control:
for QF_set in QF_control:
logger.info('Flexible control by QF = {:d}'.format(QF_set))
# from IPython import embed; embed()
qf_input = torch.tensor([[1-QF_set/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-QF_set/100]])
img_E,QF = model(img_L, qf_input)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
util.imsave(img_E, os.path.join(E_path, img_name + '_qf_'+ str(QF_set)+'.png'))
if __name__ == '__main__':
main()