-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathReferences.txt
114 lines (112 loc) · 23.8 KB
/
References.txt
1
MemSTATS References: [1] C. Lizak, S. Gerber, S. Numao, M. Aebi, K.P. Locher, X-ray structure of a bacterial oligosaccharyltransferase, Nature. 474 (2011) 350–356. doi:10.1038/nature10151.[2] X. Li, S. Dang, C. Yan, X. Gong, J. Wang, Y. Shi, Structure of a presenilin family intramembrane aspartate protease, Nature. 493 (2013) 56–61. doi:10.1038/nature11801.[3] I. Manolaridis, K. Kulkarni, R.B. Dodd, S. Ogasawara, Z. Zhang, G. Bineva, N. O’Reilly, S.J. Hanrahan, A.J. Thompson, N. Cronin, S. Iwata, D. Barford, Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1, Nature. 504 (2013) 301–305. doi:10.1038/nature12754.[4] M.J. Lemieux, S.J. Fischer, M.M. Cherney, K.S. Bateman, M.N.G. James, The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis, Proc. Natl. Acad. Sci. 104 (2007) 750–754. doi:10.1073/pnas.0609981104.[5] S.E. Rollauer, M.J. Tarry, J.E. Graham, M. Jääskeläinen, F. Jäger, S. Johnson, M. Krehenbrink, S.M. Liu, M.J. Lukey, J. Marcoux, M.A. McDowell, F. Rodriguez, P. Roversi, P.J. Stansfeld, C. V. Robinson, M.S.P. Sansom, T. Palmer, M. Högbom, B.C. Berks, S.M. Lea, Structure of the TatC core of the twin-arginine protein transport system, Nature. 492 (2012) 210–214. doi:10.1038/nature11683.[6] K. Kumazaki, S. Chiba, M. Takemoto, A. Furukawa, K.I. Nishiyama, Y. Sugano, T. Mori, N. Dohmae, K. Hirata, Y. Nakada-Nakura, A.D. Maturana, Y. Tanaka, H. Mori, Y. Sugita, F. Arisaka, K. Ito, R. Ishitani, T. Tsukazaki, O. Nureki, Structural basis of Sec-independent membrane protein insertion by YidC, Nature. 509 (2014) 516–519. doi:10.1038/nature13167.[7] C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution, Nature. 405 (2000) 647–655. doi:10.1038/35015017.[8] J.L.W. Morgan, J. Strumillo, J. Zimmer, Crystallographic snapshot of cellulose synthesis and membrane translocation, Nature. 493 (2013) 181–186. doi:10.1038/nature11744.[9] A.I. Sobolevsky, M.P. Rosconi, E. Gouaux, X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor, Nature. 462 (2009) 745–756. doi:10.1038/nature08624.[10] J. Kniazeff, L. Prézeau, P. Rondard, J.P. Pin, C. Goudet, Dimers and beyond: the functional puzzles of class C GPCRs, Pharmacol. Ther. 130 (2011) 9–25. doi:10.1016/j.pharmthera.2011.01.006.[11] D. Xia, C.-A. Yu, H. Kim, J. Xia, A.M. Kachurin, L. Zhang, L. Yu, J. Deisenhofer, Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria, Science. 277 (1997) 60–66. doi:10.1126/science.277.5322.60.[12] S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Structure at 2.8 Å resolution of cytochrome c oxidase from paracoccus denitrificans, Nature. 376 (1995) 660–669. doi:10.1038/376660a0.[13] K.R. MacKenzie, J.H. Prestegard, D.M. Engelman, A transmembrane helix dimer: structure and implications, Science. 276 (1997) 131–133. doi:10.1126/science.276.5309.131.[14] K.R. Vinothkumar, R. Henderson, Structures of membrane proteins, 2010. doi:10.1017/S0033583510000041.[15] J. Hellmich, M. Bommer, A. Burkhardt, M. Ibrahim, J. Kern, A. Meents, F. Müh, H. Dobbek, A. Zouni, Native-like Photosystem II superstructure at 2.44 Å resolution through detergent extraction from the protein crystal, Structure. 22 (2014) 1607–1615. doi:10.1016/j.str.2014.09.007.[16] S. Choi, J. Jeon, J.-S. Yang, S. Kim, Common occurrence of internal repeat symmetry in membrane proteins., Proteins. 71 (2008) 68–80. doi:10.1002/prot.21656.[17] R.J.P. Dawson, K.P. Locher, Structure of a bacterial multidrug ABC transporter, Nature. 443 (2006) 180–185. doi:10.1038/nature05155.[18] S.G. Aller, J. Yu, A. Ward, Y. Weng, S. Chittaboina, P.M. Harrell, Y.T. Trinh, Q. Zhang, I.L. Urbatsch, G. Chang, Structures of P-glycoproteins reveals a molecular basis for poly-specific drug binding, Science. 323 (2009) 1718–1722. doi:10.1126/science.1168750.Structure.[19] K. Hollenstein, D.C. Frei, K.P. Locher, Structure of an ABC transporter in complex with its binding protein, Nature. 446 (2007) 213–216. doi:10.1038/nature05626.[20] M.L. Oldham, D. Khare, F.A. Quiocho, A.L. Davidson, J. Chen, Crystal structure of a catalytic intermediate of the maltose transporter, Nature. 450 (2007) 515–521. doi:10.1038/nature06264.[21] K.P. Locher, A.T. Lee, D.C. Rees, The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism, Science. 296 (2002) 1091–1098. doi:10.1126/science.1071142.[22] D. Myers-Turnbull, S.E. Bliven, P.W. Rose, Z.K. Aziz, P. Youkharibache, P.E. Bourne, A. Prlić, Systematic detection of internal symmetry in proteins using CE-Symm, J. Mol. Biol. 426 (2014) 2255–2268. doi:10.1016/j.jmb.2014.03.010.[23] V.I. Gordeliy, J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinger, G. Büldt, T. Savopol, A.J. Scheidig, J.P. Klare, M. Engelhard, Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex, Nature. 419 (2002) 484–487. doi:10.1038/nature01109.[24] M. Lu, D. Fu, Structure of the zinc transporter YiiP, Science. 317 (2007) 1746–1748. doi:10.1126/science.1143748.[25] Y. Xu, Y. Tao, L.S. Cheung, C. Fan, L.-Q. Chen, S. Xu, K. Perry, W.B. Frommer, L. Feng, Structures of bacterial homologues of SWEET transporters in two distinct conformations, Nature. 515 (2014) 448–452. doi:10.1038/nature13670.[26] Y. Fang, H. Jayaram, T. Shane, L. Kolmakova-Partensky, F. Wu, C. Williams, Y. Xiong, C. Miller, Structure of a prokaryotic virtual proton pump at 3.2 Å resolution, Nature. 460 (2009) 1040–1043. doi:10.1038/nature08201.[27] L.R. Forrest, Y.-W. Zhang, M.T. Jacobs, J. Gesmonde, L. Xie, B.H. Honig, G. Rudnick, Mechanism for alternating access in neurotransmitter transporters, Proc. Natl. Acad. Sci. 105 (2008) 10338–10343. doi:10.1073/pnas.0804659105.[28] R. Dutzler, E.B. Campbell, M. Cadene, B.T. Chait, R. MacKinnon, X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity, Nature. 415 (2002) 287–294. doi:10.1038/415287a.[29] R. Mancusso, G.G. Gregorio, Q. Liu, D.N. Wang, Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter, Nature. 491 (2012) 622–626. doi:10.1038/nature11542.[30] Y. Cao, X. Jin, E.J. Levin, H. Huang, Y. Zong, M. Quick, J. Weng, Y. Pan, J. Love, M. Punta, B. Rost, W.A. Hendrickson, J.A. Javitch, K.R. Rajashankar, M. Zhou, Crystal structure of a phosphorylation-coupled saccharide transporter, Nature. 473 (2011) 50–54. doi:10.1038/nature09939.[31] M. Hattori, Y. Tanaka, S. Fukai, R. Ishitani, O. Nureki, Crystal structure of the MgtE Mg2+ transporter, Nature. 448 (2007) 1072–1075. doi:10.1038/nature06093.[32] F. Sun, X. Huo, Y. Zhai, A. Wang, J. Xu, D. Su, M. Bartlam, Z. Rao, Crystal structure of mitochondrial respiratory membrane protein Complex II, Cell. 121 (2005) 1043–1057. doi:10.1016/j.cell.2005.05.025.[33] E. Karakas, H. Furukawa, Crystal structure of a heterotetrameric NMDA receptor ion channel, Science. 344 (2014) 992–997. doi:10.1126/science.1251915.[34] J. Deisenhofer, O. Epp, I. Sinning, H. Michel, Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis, J. Mol. Biol. 246 (1995) 429–457. doi:10.1006/jmbi.1994.0097.[35] M. Zhou, Structure of a membrane-embedded prenyltransferase homologous to UBIAD1, PLoS Biol. 12 (2014) e1001911. doi:10.1371/journal.pbio.1001911.[36] X. He, P. Szewczyk, A. Karyakin, M. Evin, W.X. Hong, Q. Zhang, G. Chang, Structure of a cation-bound multidrug and toxic compound extrusion transporter, Nature. 467 (2010) 991–994. doi:10.1038/nature09408.[37] M. Jaehme, A. Guskov, D.J. Slotboom, Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog, Nat. Struct. Mol. Biol. 21 (2014) 1013–1015. doi:10.1038/nsmb.2909.[38] T. Eicher, M.A. Seeger, C. Anselmi, W. Zhou, L. Brandstätter, F. Verrey, K. Diederichs, J.D. Faraldo-Gómez, K.M. Pos, Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB, Elife. 3 (2014) e03145. doi:10.7554/eLife.03145.[39] S.J. Fleishman, S.E. Harrington, A. Enosh, D. Halperin, C.G. Tate, N. Ben-Tal, Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain, J. Mol. Biol. 364 (2006) 54–67. doi:10.1016/j.jmb.2006.08.072.[40] J. Liao, H. Li, W. Zeng, D.B. Sauer, R. Belmares, Y. Jiang, Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger, Science. 335 (2012) 686–90. doi:10.1126/science.1215759.[41] Z.L. Johnson, C.G. Cheong, S.Y. Lee, Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å, Nature. 483 (2012) 489–493. doi:10.1038/nature10882.[42] T.J. Crisman, S. Qu, B.I. Kanner, L.R. Forrest, Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats, Proc. Natl. Acad. Sci. 106 (2009) 20752–20757. doi:10.1073/pnas.0908570106.[43] A. Vergara-Jaque, C. Fenollar-Ferrer, D. Kaufmann, L.R. Forrest, Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms, Front. Pharmacol. 6 (2015) 1–12. doi:10.3389/fphar.2015.00183.[44] F. Lu, S. Li, Y. Jiang, J. Jiang, H. Fan, G. Lu, D. Deng, S. Dang, X. Zhang, J. Wang, N. Yan, Structure and mechanism of the uracil transporter UraA, Nature. 472 (2011) 243–247. doi:10.1038/nature09885.[45] M. Schushan, A. Rimon, T. Haliloglu, L.R. Forrest, E. Padan, N. Ben-Tal, A model-structure of a periplasm-facing state of the NhaA antiporter suggests the molecular underpinnings of pH-induced conformational changes, J. Biol. Chem. 287 (2012) 18249–18261. doi:10.1074/jbc.M111.336446.[46] S. Khademi, Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A, Science. 305 (2004) 1587–1594. doi:10.1126/science.1101952.[47] Y. Wang, Y. Huang, J. Wang, C. Cheng, W. Huang, P. Lu, Y.N. Xu, P. Wang, N. Yan, Y. Shi, Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel, Nature. 462 (2009) 467–472. doi:10.1038/nature08610.[48] K. Mitsuoka, K. Murata, T. Walz, T. Hirai, P. Agre, J.B. Heymann, A. Engel, Y. Fujiyoshi, The structure of aquaporin-1 at 4.5-Å resolution reveals short α- helices in the center of the monomer, J. Struct. Biol. 128 (1999) 34–43. doi:10.1006/jsbi.1999.4177.[49] B. Van den Berg, W.M. Clemons, I. Collinson, Y. Modis, E. Hartmann, S.C. Harrison, T.A. Rapoport, X-ray structure of a protein-conducting channel, Nature. 427 (2004) 36–44. doi:10.1038/nature02218.[50] Y. Chang, R. Bruni, B. Kloss, Z. Assur, E. Kloppmann, B. Rost, W.A. Hendrickson, Q. Liu, Structural basis for a pH-sensitive calcium leak across membranes, Science. 344 (2014) 1131–5. doi:10.1126/science.1252043.[51] E.J. Levin, M. Quick, M. Zhou, Crystal structure of a bacterial homologue of the kidney urea transporter, Nature. 462 (2009) 757–761. doi:10.1038/nature08558.[52] R.G. Efremov, L. a Sazanov, Structure of the membrane domain of respiratory complex I, Nature. 476 (2011) 414–20. doi:10.1038/nature10330.[53] L.R. Forrest, Structural symmetry in membrane proteins, Annu. Rev. Biophys. 44 (2015) 311–337. doi:10.1146/annurev-biophys-051013-023008.[54] T. Hirai, J.A.W. Heymann, D. Shi, R. Sarker, P.C. Maloney, S. Subramaniam, Three-dimensional structure of a bacterial oxalate transporter, Nat. Struct. Biol. 9 (2002) 597–600. doi:10.1038/nsb821.[55] D. Li, J.A. Lyons, V.E. Pye, L. Vogeley, D. Aragão, C.P. Kenyon, S.T.A. Shah, C. Doherty, M. Aherne, M. Caffrey, Crystal structure of the integral membrane diacylglycerol kinase, Nature. 497 (2013) 521–4. doi:10.1038/nature12179.[56] A.D. Ferguson, B.M. McKeever, S. Xu, D. Wisniewski, D.K. Miller, T.-T. Yamin, R.H. Spencer, L. Chu, F. Ujjainwalla, B.R. Cunningham, J.F. Evans, J.W. Becker, Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein, Science. 317 (2007) 510–2. doi:10.1126/science.1144346.[57] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, W. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 A resolution, Nature. 428 (2004) 287–292. doi:http://www.nature.com/nature/journal/v428/n6980/suppinfo/nature02373_S1.html.[58] R.L. Lieberman, A.C. Rosenzweig, Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane, Nature. 434 (2005) 177–182. doi:10.1038/nature03311.[59] S. Ressl, A.C. Terwisscha Van Scheltinga, C. Vonrhein, V. Ott, C. Ziegler, Molecular basis of transport and regulation in the Na+/betaine symporter BetP, Nature. 458 (2009) 47–52. doi:10.1038/nature07819.[60] J. Jasti, H. Furukawa, E.B. Gonzales, E. Gouaux, Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH, Nature. 449 (2007) 316–23. doi:10.1038/nature06163.[61] T. Kawate, J.C. Michel, W.T. Birdsong, E. Gouaux, Crystal structure of the ATP-gated P2X4 ion channel in the closed state, Nature. 460 (2009) 592–598. doi:10.1038/nature08198.Crystal.[62] T. Schirmer, T. Keller, Y. Wang, J. Rosenbusch, Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution, Science. 267 (1995) 512–514. doi:10.1126/science.7824948.[63] Y.-H. Chen, L. Hu, M. Punta, R. Bruni, B. Hillerich, B. Kloss, B. Rost, J. Love, S.A. Siegelbaum, W.A. Hendrickson, Homologue structure of the SLAC1 anion channel for closing stomata in leaves, Nature. 467 (2010) 1074–80. doi:10.1038/nature09487.[64] T. Hino, Y. Matsumoto, S. Nagano, H. Sugimoto, Y. Fukumori, T. Murata, S. Iwata, Y. Shiro, Structural basis of biological N2O generation by bacterial nitric oxide reductase, Science. 330 (2010) 1666–1670. doi:10.1126/science.1195591.[65] J. Kellosalo, T. Kajander, K. Kogan, K. Pokharel, A. Goldman, The structure and catalytic cycle of a sodium-pumping pyrophosphatase, Science. 337 (2012) 473–476. doi:10.1126/science.1222505.[66] E. Pebay-Peyroula, C. Dahout-Gonzalez, R. Kahn, V. Trézéguet, G.J.-M. Lauquin, G. Brandolin, Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside., Nature. 426 (2003) 39–44. doi:10.1038/nature02056.[67] D. Strugatsky, R. McNulty, K. Munson, C.K. Chen, S. Michael Soltis, G. Sachs, H. Luecke, Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori, Nature. 493 (2013) 255–258. doi:10.1038/nature11684.[68] D.A. Doyle, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science. 280 (1998) 69–77. doi:10.1126/science.280.5360.69.[69] M. Hong, W.F. DeGrado, Structural basis for proton conduction and inhibition by the influenza M2 protein, Protein Sci. 21 (2012) 1620–1633. doi:10.1002/pro.2158.[70] J. Payandeh, T. Scheuer, N. Zheng, W.A. Catterall, The crystal structure of a voltage-gated sodium channel, Nature. 475 (2011) 353–359. doi:10.1038/nature10238.[71] Y. Cao, X. Jin, H. Huang, M.G. Derebe, E.J. Levin, V. Kabaleeswaran, Y. Pan, M. Punta, J. Love, J. Weng, M. Quick, S. Ye, B. Kloss, R. Bruni, E. Martinez-Hackert, W.A. Hendrickson, B. Rost, J.A. Javitch, K.R. Rajashankar, Y. Jiang, M. Zhou, Crystal structure of a potassium ion transporter, TrkH, Nature. 471 (2011) 336–341. doi:10.1038/nature09731.[72] T. Gonen, P. Silz, J. Kistler, Y. Cheng, T. Walz, Aquaporin-0 membrane junctions reveal the structure of a closed water pore, Nature. 429 (2004) 193–197. doi:10.1038/nature02503.[73] R.J.C. Hilf, R. Dutzler, X-ray structure of a prokaryotic pentameric ligand-gated ion channel, Nature. 452 (2008) 375–379. doi:10.1038/nature06717.[74] V. V. Lunin, E. Dobrovetsky, G. Khutoreskaya, R. Zhang, A. Joachimiak, D.A. Doyle, A. Bochkarev, M.E. Maguire, A.M. Edwards, C.M. Koth, Crystal structure of the CorA Mg2+ transporter, Nature. 440 (2006) 833–837. doi:10.1038/nature04642.[75] T. Yang, Q. Liu, B. Kloss, R. Bruni, R.C. Kalathur, Y. Guo, E. Kloppmann, B. Rost, H.M. Colecraft, W.A. Hendrickson, Structure and selectivity in bestrophin ion channels, Science. 346 (2014) 355–359. doi:10.1126/science.1259723.[76] A. Miyazawa, Y. Fujiyoshi, N. Unwin, Structure and gating mechanism of the acetylcholine receptor pore, Nature. 423 (2003) 949–955. doi:10.1038/nature01748.[77] S. Maeda, S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, T. Tsukihara, Structure of the connexin 26 gap junction channel at 3.5 Å resolution, Nature. 458 (2009) 597–602. doi:10.1038/nature07869.[78] R.B. Bass, Crystal structure of escherichia coli MscS, a voltage-modulated and mechanosensitive channel, Science. 298 (2002) 1582–1587. doi:10.1126/science.1077945.[79] M.R. Popoff, Clostridial pore-forming toxins: powerful virulence factors, Anaerobe. 30 (2014) 220–238. doi:10.1016/j.anaerobe.2014.05.014.[80] K. McLuskey, A.W. Roszak, Y. Zhu, N.W. Isaacs, Crystal structures of all-alpha type membrane proteins, Eur. Biophys. J. 39 (2010) 723–755. doi:10.1007/s00249-009-0546-6.[81] S. Niwa, L.-J. Yu, K. Takeda, Y. Hirano, T. Kawakami, Z.-Y. Wang-Otomo, K. Miki, Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å, Nature. 508 (2014) 228–32. doi:10.1038/nature13197.[82] T. Meier, J.D. Faraldo-Gómez, M. Börsch, ATP synthase – a paradigmatic molecular machine, in: J. Frank (Ed.), Mol. Mach. Biol., Cambridge University Press, Cambridge, 2011: pp. 208–238. doi:10.1017/CBO9781139003704.013.[83] M. Mueller, U. Grauschopf, T. Maier, R. Glockshuber, N. Ban, The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism, Nature. 459 (2009) 726–30. doi:10.1038/nature08026.[84] C. Dong, K. Beis, J. Nesper, A.L. Brunkan-LaMontagne, B.R. Clarke, C. Whitfield, J.H. Naismith, Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein, Nature. 444 (2006) 226–229. doi:10.1038/nature05267.[85] Y. Mazor, A. Borovikova, N. Nelson, The structure of plant photosystem i super-complex at 2.8 Å resolution, Elife. 4 (2015) 1–18. doi:10.7554/eLife.07433.[86] A. Amunts, H. Toporik, A. Borovikova, N. Nelson, Structure determination and improved model of plant photosystem I, J. Biol. Chem. 285 (2010) 3478–3486. doi:10.1074/jbc.M109.072645.[87] M. Jormakka, S. Törnroth, B. Byrne, S. Iwata, Molecular basis of proton motive force generation: structure of formate dehydrogenase-N, Science. 295 (2002) 1863–8. doi:10.1126/science.1068186.[88] T.M. Tomasiak, T.L. Archuleta, J. Andréll, C. Luna-Chávez, T.A. Davis, M. Sarwar, A.J. Ham, W. Hayes McDonald, V. Yankovskaya, H.A. Stern, J.N. Johnston, E. Maklashina, G. Cecchini, T.M. Iverson, Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase, J. Biol. Chem. 286 (2011) 3047–3056. doi:10.1074/jbc.M110.192849.[89] M.G. Bertero, R.A. Rothery, M. Palak, C. Hou, D. Lim, F. Blasco, J.H. Weiner, N.C.J. Strynadka, Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A, Nat. Struct. Biol. 10 (2003) 681–687. doi:10.1038/nsb969.[90] A. Pautsch, G.E. Schulz, Structure of the outer membrane protein A transmembrane domain, Nat. Struct. Biol. 5 (1998) 1013–7. doi:10.1038/2983.[91] V.E. Ahn, E.I. Lo, C.K. Engel, L. Chen, P.M. Hwang, L.E. Kay, R.E. Bishop, G.G. Privé, A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin, EMBO J. 23 (2004) 2931–2941. doi:10.1038/sj.emboj.7600320.[92] S.M. Prince, M. Achtman, J.P. Derrick, Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 3417–3421. doi:10.1073/pnas.062630899.[93] V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, C. Hughes, Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export, Nature. 405 (2000) 914–9. doi:10.1038/35016007.[94] H.J. Snijder, I. Ubarretxena-Belandia, M. Blaauw, K.H. Kalk, H.M. Varheij, M.R. Egmond, N. Dekker, B.W. Dijkstra, Structural evidence for dimerization-regulated activation of an integral membrane phospholipase, Nature. 401 (1999) 717–721. doi:10.1038/401717a0.[95] J.W. Fairman, N. Dautin, D. Wojtowicz, W. Liu, N. Noinaj, T.J. Barnard, E. Udho, T.M. Przytycka, V. Cherezov, S.K. Buchanan, Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis, Structure. 20 (2012) 1233–1243. doi:10.1016/j.str.2012.04.011.[96] C.A.J. Hutter, R. Lehner, C. Wirth, G. Condemine, C. Peneff, T. Schirmer, Structure of the oligogalacturonate-specific KdgM porin, Acta Crystallogr. Sect. D Biol. Crystallogr. 70 (2014) 1770–1778. doi:10.1107/S1399004714007147.[97] C.J. Oomen, P. Van Ulsen, P. Van Gelder, M. Feijen, J. Tommassen, P. Gros, Structure of the translocator domain of a bacterial autotransporter, EMBO J. 23 (2004) 1257–1266. doi:10.1038/sj.emboj.7600148.[98] G. Meng, N.K. Surana, J.W. St Geme, G. Waksman, Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter, EMBO J. 25 (2006) 2297–2304. doi:10.1038/sj.emboj.7601132.[99] B. van den Berg, P. Black, W.M. Clemons Jr., T.A. Rapoport, Crystal structure of the long-chain fatty acid transporter FadL, Science. 304 (2004) 1506–1509. doi:10.1126/science.1097524.[100] G. V. Subbarao, B. van den Berg, Crystal structure of the monomeric porin OmpG, J. Mol. Biol. 360 (2006) 750–759. doi:10.1016/j.jmb.2006.05.045.[101] H. Unno, S. Goda, T. Hatakeyama, Hemolytic lectin cel-iii heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process, J. Biol. Chem. 289 (2014) 12805–12812. doi:10.1074/jbc.M113.541896.[102] M. Faller, M. Niederweis, G.E. Schultz, The structure of a mycobacterial outer membrane channel, Science. 303 (2004) 1189–1192.[103] T.F. Moraes, M. Bains, R.E.W. Hancock, N.C.J. Strynadka, An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane, Nat. Struct. Mol. Biol. 14 (2007) 85–87. doi:10.1038/nsmb1189.[104] A. Kreusch, G.E. Schulz, Refined structure of the porin from Rhodopseudomonas blastica, J. Mol. Biol. 243 (1994) 891–905. doi:10.1006/jmbi.1994.1690.[105] M. Podobnik, P. Savory, N. Rojko, M. Kisovec, N. Wood, R. Hambley, J. Pugh, E.J. Wallace, L. McNeill, M. Bruce, I. Liko, T.M. Allison, S. Mehmood, N. Yilmaz, T. Kobayashi, R.J.C. Gilbert, C. V. Robinson, L. Jayasinghe, G. Anderluh, Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly, Nat. Commun. 7 (2016) 1–10. doi:10.1038/ncomms11598.[106] S. Biswas, M.M. Mohammad, D.R. Patel, L. Movileanu, B. Van Den Berg, Structural insight into OprD substrate specificity, Nat. Struct. Mol. Biol. 14 (2007) 1108–1109. doi:10.1038/nsmb1304.[107] R. Ujwal, D. Cascio, J.-P. Colletier, S. Faham, J. Zhang, L. Toro, P. Ping, J. Abramson, The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating, Proc. Natl. Acad. Sci. 105 (2008) 17742–17747. doi:10.1073/pnas.0809634105.[108] D.P. Chimento, A.K. Mohanty, R.J. Kadner, M.C. Wiener, Substrate-induced transmembrane signaling in the cobalamin transporter BtuB, Nat. Struct. Biol. 10 (2003) 394–401. doi:10.1038/nsb914.[109] H. Remaut, C. Tang, N.S. Henderson, J.S. Pinkner, T. Wang, S.J. Hultgren, D.G. Thanassi, G. Waksman, H. Li, Fiber formation across the bacterial outer membrane by the chaperone/usher pathway, Cell. 133 (2008) 640–652. doi:10.1016/j.cell.2008.03.033.[110] I. Botos, N. Majdalani, S.J. Mayclin, J.G. McCarthy, K. Lundquist, D. Wojtowicz, T.J. Barnard, J.C. Gumbart, S.K. Buchanan, Structural and functional characterization of the LPS transporter LptDE from Gram-negative pathogens, Structure. 24 (2016) 965–976. doi:10.1016/j.str.2016.03.026.[111] B. Cao, Y. Zhao, Y. Kou, D. Ni, X.C. Zhang, Y. Huang, Structure of the nonameric bacterial amyloid secretion channel, Proc. Natl. Acad. Sci. 111 (2014) E5439–E5444. doi:10.1073/pnas.1411942111.