-
Notifications
You must be signed in to change notification settings - Fork 159
/
test.py
74 lines (59 loc) · 2.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import imlib as im
import numpy as np
import pylib as py
import tensorflow as tf
import tf2lib as tl
import data
import module
# ==============================================================================
# = param =
# ==============================================================================
py.arg('--experiment_dir')
py.arg('--batch_size', type=int, default=32)
test_args = py.args()
args = py.args_from_yaml(py.join(test_args.experiment_dir, 'settings.yml'))
args.__dict__.update(test_args.__dict__)
# ==============================================================================
# = test =
# ==============================================================================
# data
A_img_paths_test = py.glob(py.join(args.datasets_dir, args.dataset, 'testA'), '*.jpg')
B_img_paths_test = py.glob(py.join(args.datasets_dir, args.dataset, 'testB'), '*.jpg')
A_dataset_test = data.make_dataset(A_img_paths_test, args.batch_size, args.load_size, args.crop_size,
training=False, drop_remainder=False, shuffle=False, repeat=1)
B_dataset_test = data.make_dataset(B_img_paths_test, args.batch_size, args.load_size, args.crop_size,
training=False, drop_remainder=False, shuffle=False, repeat=1)
# model
G_A2B = module.ResnetGenerator(input_shape=(args.crop_size, args.crop_size, 3))
G_B2A = module.ResnetGenerator(input_shape=(args.crop_size, args.crop_size, 3))
# resotre
tl.Checkpoint(dict(G_A2B=G_A2B, G_B2A=G_B2A), py.join(args.experiment_dir, 'checkpoints')).restore()
@tf.function
def sample_A2B(A):
A2B = G_A2B(A, training=False)
A2B2A = G_B2A(A2B, training=False)
return A2B, A2B2A
@tf.function
def sample_B2A(B):
B2A = G_B2A(B, training=False)
B2A2B = G_A2B(B2A, training=False)
return B2A, B2A2B
# run
save_dir = py.join(args.experiment_dir, 'samples_testing', 'A2B')
py.mkdir(save_dir)
i = 0
for A in A_dataset_test:
A2B, A2B2A = sample_A2B(A)
for A_i, A2B_i, A2B2A_i in zip(A, A2B, A2B2A):
img = np.concatenate([A_i.numpy(), A2B_i.numpy(), A2B2A_i.numpy()], axis=1)
im.imwrite(img, py.join(save_dir, py.name_ext(A_img_paths_test[i])))
i += 1
save_dir = py.join(args.experiment_dir, 'samples_testing', 'B2A')
py.mkdir(save_dir)
i = 0
for B in B_dataset_test:
B2A, B2A2B = sample_B2A(B)
for B_i, B2A_i, B2A2B_i in zip(B, B2A, B2A2B):
img = np.concatenate([B_i.numpy(), B2A_i.numpy(), B2A2B_i.numpy()], axis=1)
im.imwrite(img, py.join(save_dir, py.name_ext(B_img_paths_test[i])))
i += 1