forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt121.tex
1057 lines (793 loc) · 42 KB
/
mt121.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt121.tex}
\versiondate{21.12.03}
\copyrightdate{1994}
\def\chaptername{Integration}
\def\sectionname{Measurable functions}
\newsection{121}
In this section, I take a step back to develop ideas relating to
$\sigma$-algebras of sets, following \S111; there will be no mention
of `measures' here, except in the exercises. The aim is to
establish the concept of `measurable function' (121C) and a variety of
associated techniques.
The best single example of a $\sigma$-algebra to bear in mind when
reading this chapter is probably the $\sigma$-algebra of Borel subsets of
$\Bbb R$\cmmnt{ (111G)}; the
$\sigma$-algebra of Lebesgue measurable subsets of
$\Bbb R$\cmmnt{ (114E)} is a good second.
Throughout the exposition here (starting with 121A) I seek to deal with
functions which are not defined on the whole of the space $X$ under
consideration. I believe that there are compelling reasons for facing
up to such functions at an early stage\cmmnt{ (see 121G)}; but undeniably
they add to the technical difficulties, and it would be fair to read
through the chapter once with the mental reservation that all functions
are taken to be defined everywhere, before returning to deal with the
general case.
\leader{121A}{Lemma} Let $X$ be a set and $\Sigma$ a $\sigma$-algebra of
subsets of $X$. Let $D$ be any subset of $X$ and write
\Centerline{$\Sigma_D=\{E\cap D:E\in\Sigma\}$.}
\noindent Then $\Sigma_D$ is a $\sigma$-algebra of subsets of $D$.
\proof{{\bf (i)} $\emptyset=\emptyset\cap D\in\Sigma_D$ because
$\emptyset\in\Sigma$.
\medskip
{\bf (ii)} If $F\in\Sigma_D$, there is an $E\in\Sigma$ such that
$F=E\cap D$; now $D\setminus F=(X\setminus E)\cap D\in\Sigma_D$ because
$X\setminus E\in\Sigma$.
\medskip
{\bf (iii)} If $\langle F_n\rangle_{n\in\Bbb N}$ is any sequence in
$\Sigma_D$, then for each $n\in\Bbb N$ we may choose an $E_n\in\Sigma$
such that $F_n=E_n\cap D$; now
$\bigcup_{n\in\Bbb N}F_n=(\bigcup_{n\in\Bbb N}E_n)\cap D\in\Sigma_D$ because
$\bigcup_{n\in\Bbb N}E_n\in\Sigma$.
}%end of proof of 121A
\medskip
\noindent{\bf Notation} I will call $\Sigma_D$ the {\bf subspace
$\sigma$-algebra} of subsets of $D$, and I will say that its members are
{\bf relatively measurable} in $D$.
$\Sigma_D$ is also sometimes called the {\bf trace} of $\Sigma$ on $D$.
\leader{121B}{Proposition} Let $X$ be a set, $\Sigma$ a $\sigma$-algebra
of subsets of $X$, and $D$ a subset of $X$. Write $\Sigma_D$ for the
subspace $\sigma$-algebra of subsets of $D$. Then for any function
$f:D\to\Bbb R$ the following assertions are equiveridical\cmmnt{, that is, if one of them is true so are all the others}:
\quad(i) $\{x:f(x)<a\}\in\Sigma_D$ for every $a\in\Bbb R$;
\quad(ii) $\{x:f(x)\le a\}\in\Sigma_D$ for every $a\in\Bbb R$;
\quad(iii) $\{x:f(x)>a\}\in\Sigma_D$ for every $a\in\Bbb R$;
\quad(iv) $\{x:f(x)\ge a\}\in\Sigma_D$ for every $a\in\Bbb R$.
\proof{{\bf (i)$\Rightarrow$(ii)} Assume (i), and let
$a\in\Bbb R$. Then
\Centerline{$\{x:f(x)\le a\}
=\bigcap_{n\in\Bbb N}\{x:f(x)<a+2^{-n}\}\in\Sigma_D$}
\noindent because $\{x:f(x)<a+2^{-n}\}\in\Sigma_D$ for every $n$ and
$\Sigma_D$ is closed under countable intersections (111Dd).
Because $a$ is arbitrary, (ii) is true.
\wheader{121B}{4}{2}{2}{72pt}
{\bf (ii)$\Rightarrow$(iii)} Assume (ii), and let $a\in\Bbb R$. Then
\Centerline{$\{x:f(x)>a\}=D\setminus\{x:f(x)\le a\}\in\Sigma_D$}
\noindent because $\{x:f(x)\le a\}\in\Sigma_D$ and $\Sigma_D$ is closed
under complementation. Because $a$ is arbitrary, (iii) is
true.
\medskip
{\bf (iii)$\Rightarrow$(iv)} Assume (iii), and let $a\in\Bbb R$. Then
\Centerline{$\{x:f(x)\ge a\}
=\bigcap_{n\in\Bbb N}\{x:f(x)>a-2^{-n}\}\in\Sigma_D$}
\noindent because $\{x:f(x)>a-2^{-n}\}\in\Sigma_D$ for every $n$ and
$\Sigma_D$ is closed under countable intersections.
Because $a$ is arbitrary, (iv) is true.
\medskip
{\bf (iv)$\Rightarrow$(i)} Assume (iv), and let $a\in\Bbb R$. Then
\Centerline{$\{x:f(x)<a\}=D\setminus\{x:f(x)\ge a\}\in\Sigma_D$}
\noindent because $\{x:f(x)\ge a\}\in\Sigma_D$ and $\Sigma_D$ is closed
under complementation. Because $a$ is arbitrary, (i) is
true.
}%end of proof of 121B
\leader{121C}{Definition} Let $X$ be a set, $\Sigma$ a $\sigma$-algebra
of subsets of $X$, and $D$ a subset of $X$. A function $f:D\to\Bbb R$
is called {\bf measurable} (or {\bf $\Sigma$-measurable}) if it
satisfies any, or equivalently all, of the conditions (i)-(iv) of 121B.
If $X$ is $\Bbb R$ or $\BbbR^r$, and $\Sigma$ is its Borel
$\sigma$-algebra\cmmnt{ (111G)}, a $\Sigma$-measurable function is
called {\bf Borel measurable}. If $X$ is $\Bbb R$ or $\BbbR^r$, and
$\Sigma$ is
the $\sigma$-algebra of Lebesgue measurable sets\cmmnt{ (114E, 115E)},
a $\Sigma$-measurable function is called {\bf Lebesgue measurable}.
\cmmnt{\medskip
\noindent{\bf Remark} Naturally the principal case here is when $D=X$.
However, partially-defined functions are so common, and so important, in
analysis (consider, for instance, the real function $\ln\sin$) that it
seems worth while, from the beginning, to establish techniques for
handling them efficiently.
Many authors develop a theory of `extended real numbers' at this
point, working with $[-\infty,\infty]=\Bbb R\cup\{-\infty,\infty\}$, and
defining measurability for functions taking values in this set. I
outline such a theory in \S135 below.
}%end of comment
\leader{121D}{Proposition} Let $X$ be $\BbbR^r$ for some $r\ge 1$, $D$
a subset of $X$, and $g:D\to\Bbb R$ a function.
(a) If $g$ is Borel measurable it is Lebesgue measurable.
(b) If $g$ is continuous it is Borel measurable.
(c) If $r=1$ and $g$ is monotonic it is Borel measurable.
\proof{{\bf (a)} This is immediate from the definitions in 121C,
if we recall that the Borel $\sigma$-algebra is included in the Lebesgue
$\sigma$-algebra (114G, 115G).
\medskip
{\bf (b)} Take $a\in\Bbb R$. Set
\Centerline{$\Cal G=\{G:G\subseteq\BbbR^r\text{ is
open},\,g(x)<a\Forall x\in G\cap D\}$,}
\Centerline{$G_0=\bigcup\Cal G
=\{x:\exists\enskip G\in\Cal G,\,x\in G\}$.}
\noindent Then $G_0$ is a union of open sets, therefore open (1A2Bd).
Next,
\Centerline{$\{x:g(x)<a\}=G_0\cap D$.}
\noindent\Prf\ {\bf (i)} If $g(x)<a$, then (because $g$ is
continuous) there is a $\delta>0$ such that $|g(y)-g(x)|<a-g(x)$
whenever $y\in D$ and $\|y-x\|<\delta$. But
$\{y:\|y-x\|<\delta\}$ is open (1A2D), so belongs to $\Cal G$ and is
included in
$G_0$, and $x\in G_0\cap D$. {\bf (ii)} If $x\in
G_0\cap D$, then there is a $G\in\Cal G$ such that $x\in G$; now
$g(y)<a$ for every $y\in G\cap D$, so, in particular, $g(x)<a$.\ \Qed
Finally, $G_0$, being open, is a Borel set. As $a$ is
arbitrary, $g$ is Borel measurable.
\medskip
{\bf (c)} Suppose first that $g$ is non-decreasing. Let $a\in\Bbb R$
and write $E=\{x:g(x)<a\}$. If $E=D$ or $E=\emptyset$ then of course it
is the intersection of $D$ with a Borel set. Otherwise, $E$ is
non-empty and bounded above in $\Bbb R$, so has a supremum $c\in\Bbb R$.
Now $E$ must be either $D\cap\ooint{-\infty,c}$ or
$D\cap\ocint{-\infty,c}$, according to whether $c\in E$ or not, and in
either case is the intersection of $D$ with a Borel set (see 114G).
Similarly, if $g$ is non-increasing, $\{x:g(x)>a\}$ will again be the
intersection of $D$ with either $\emptyset$ or $\Bbb R$ or
$\ocint{-\infty,c}$ or $\ooint{-\infty,c}$ for some $c$. So in this
case 121B(iii) will be satisfied.
\medskip
\noindent{\bf Remark} I see that in part (b) of the above proof I use
some basic facts about open sets in $\BbbR^r$. These are covered in
detail in \S1A2. If they are new to you it would probably be sensible
to rehearse the arguments with $r=1$, so that $D\subseteq\Bbb R$, before
embracing the general case.
}%end of proof of 121D
\vleader{108pt}{121E}{Theorem}
Let $X$ be a set and $\Sigma$ a $\sigma$-algebra
of subsets of $X$. Let $f$ and $g$ be real-valued functions defined on
domains $\dom f$, $\dom g\subseteq X$.
(a) If $f$ is constant it is
measurable.
(b) If $f$ and $g$ are measurable, so is $f+g$, where
$(f+g)(x)=f(x)+g(x)$ for $x\in
\dom f\cap\dom g$.
(c) If $f$ is measurable and $c\in\Bbb R$, then $cf$ is measurable,
where
$(cf)(x)=c\cdot f(x)$ for $x\in \dom f$.
(d) If $f$ and $g$ are measurable, so is $f\times g$, where $(f\times
g)(x)=f(x)\times g(x)$ for $x\in \dom f\cap\dom g$.
(e) If $f$ and $g$ are measurable, so is $f/g$, where
$(f/g)(x)=f(x)/g(x)$ when
$x\in \dom f\cap\dom g$ and $g(x)\ne 0$.
(f) If $f$ is measurable and $E\subseteq\Bbb R$ is a Borel set, then
there is an
$F\in\Sigma$ such that $f^{-1}[E]=\{x:f(x)\in E\}$ is equal to $F\cap
\dom f$.
(g) If $f$ is measurable and $h$ is a Borel measurable function from a
subset $\dom h$
of $\Bbb R$ to $\Bbb R$, then $hf$ is measurable, where
$(hf)(x)=h(f(x))$ for $x\in\dom(hf)=\{y:y\in\dom f,\,f(y)\in\dom h\}$.
(h) If $f$ is measurable and $A$ is any set, then $f\restr A$ is
measurable, where $\dom(f\restr A)=A\cap\dom f$ and
$(f\restr A)(x)=f(x)$ for $x\in A\cap\dom f$.
\proof{ For any $D\subseteq X$ write $\Sigma_D$ for the subspace
$\sigma$-algebra of subsets of $D$.
\medskip
{\bf (a)} If $f(x)=c$ for every $x\in \dom f$, then
$\{x:f(x)<a\}=\dom f$ if $c<a$, $\emptyset$ otherwise, and in either
case
belongs to $\Sigma_{\dom f}$.
\medskip
{\bf (b)} Write $D=\dom(f+g)=\dom f\cap\dom g$. If $a\in\Bbb R$ then
set $K=\{(q,q'):q,\,q'\in\Bbb Q,\,q+q'\le
a\}$. Then $K$ is a subset of $\Bbb Q\times\Bbb Q$, so is countable
(111Fb, 1A1E). For $q\in\Bbb Q$ choose sets $F_q$,
$G_q\in\Sigma$ such that
\Centerline{$\{x:f(x)<q\}=F_q\cap\dom f$,
\quad$\{x:g(x)<q\}=G_q\cap\dom g$.}
\noindent For each $(q,q')\in K$, the set
\Centerline{$E_{qq'}
=\{x:f(x)<q,\,g(x)<q'\}=F_q\cap G_{q'}\cap D$}
\noindent belongs to $\Sigma_D$.
Finally, if $(f+g)(x)<a$, then we can find
$q\in\ooint{f(x),a-g(x)}$, $q'\in\ocint{g(x),a-q}$, so that
$(q,q')\in K$ and
$x\in E_{qq'}$; while if $(q,q')\in K$ and $x\in E_{qq'}$, then
$(f+g)(x)<q+q'\le a$. Thus
\Centerline{$\{x:(f+g)(x)<a\}=\bigcup_{(q,q')\in K}E_{qq'}\in\Sigma_D$}
\noindent by 111Fa. As $a$ is arbitrary, $f+g$ is measurable.
\medskip
{\bf (c)} Write $D=\dom f$. Let $a\in\Bbb R$. If $c>0$, then
\Centerline{$\{x:cf(x)<a\}=\{x:f(x)<\Bover{a}{c}\}\in\Sigma_D$.}
\noindent If $c<0$, then
\Centerline{$\{x:cf(x)<a\}=\{x:f(x)>\Bover{a}{c}\}\in\Sigma_D$.}
\noindent While if $c=0$, then $\{x:cf(x)<a\}$ is either $D$ or
$\emptyset$, as in (a) above, so belongs to $\Sigma_D$. As $a$ is
arbitrary, $cf$ is measurable.
\medskip
{\bf (d)} Write $D=\dom(f\times g)=\dom f\cap\dom g$. Let
$a\in\Bbb R$. Let $K$ be
\Centerline{$\{(q_1,q_2,q_3,q_4):q_1,\ldots,q_4\in\Bbb Q,\,uv<a
\text{ whenever }u\in\ooint{q_1,q_2},\,v\in\ooint{q_3,q_4}\}$.}
\noindent Then $K$ is countable. For $q\in\Bbb Q$ choose sets $F_q$,
$F'_q$, $G_q$, $G'_q\in\Sigma$ such that
\Centerline{$\{x:f(x)<q\}=F_q\cap\dom f$,
\quad$\{x:f(x)>q\}=F'_q\cap\dom f$,}
\Centerline{$\{x:g(x)<q\}=G_q\cap\dom g$,
\quad$\{x:g(x)>q\}=G'_q\cap\dom g$.}
\noindent For $(q_1,q_2,q_3,q_4)\in K$ set
$$\eqalign{E_{q_1q_2q_3q_4}
&=\{x:f(x)\in\ooint{q_1,q_2},\,g(x)\in\ooint{q_3,q_4}\}\cr
&=D\cap F'_{q_1}\cap F_{q_2}\cap G'_{q_3}\cap G_{q_4}
\in\Sigma_D;\cr}$$
\noindent then $E=\bigcup_{(q_1,q_2,q_3,q_4)\in
K}E_{q_1q_2q_3q_4}\in\Sigma_D$.
Now $E=\{x:(f\times g)(x)<a\}$. \Prf\ {\bf (i)} If $(f\times g)(x)<a$,
set
$u=f(x)$, $v=g(x)$. Set
\Centerline{$\eta=\min(1,\Bover{a-uv}{1+|u|+|v|})>0$.}
\noindent Take
$q_1,\ldots,q_4\in\Bbb Q$ such that
\Centerline{$u-\eta\le q_1<u<q_2\le u+\eta$,
\quad$v-\eta\le q_3<v<q_4\le v+\eta$.}
\noindent If $u'\in\ooint{q_1,q_2}$,
$v'\in\ooint{q_3,q_4}$, then $|u'-u|<\eta$ and $|v'-v|<\eta$, so
$$\eqalign{u'v'-uv
&=(u'-u)(v'-v)+(u'-u)v+u(v'-v)\cr
&<\eta^2+\eta|v|+|u|\eta
\le\eta(1+|u|+|v|)
\le a-uv,\cr}$$
\noindent and $u'v'<a$. Accordingly $(q_1,q_2,q_3,q_4)\in K$.
Also $x\in E_{q_1q_2q_3q_4}$, so $x\in E$. Thus $\{x:(f\times
g)(x)<a\}\subseteq E$. {\bf (ii)} On the other hand, if $x\in E$,
there are
$q_1,\ldots,q_4$ such that $(q_1,q_2,q_3,q_4)\in K$ and $x\in
E_{q_1q_2q_3q_4}$, so that $f(x)\in\ooint{q_1,q_2}$ and
$g(x)\in\ooint{q_3,q_4}$ and $f(x)g(x)<a$. So
$E\subseteq\{x:(f\times g)(x)<a\}$.\ \Qed
Thus $\{x:(f\times g)(x)<a\}\in\Sigma_D$. As $a$ is arbitrary,
$f\times g$ is measurable.
\medskip
{\bf (e)} In view of (d), it will be enough to show that $1/g$ is
measurable. Now if $a>0$,
$\{x:1/g(x)<a\}=\{x:g(x)>1/a\}\cup\{x:g(x)<0\}$; if $a<0$, then
$\{x:1/g(x)<a\}=\{x:1/a<g(x)<0\}$; and if $a=0$, then
$\{x:1/g(x)<a\}=\{x:g(x)<0\}$. And all of these belong to
$\Sigma_{\dom 1/g}$.
\medskip
{\bf (f)} Write $D=\dom f$ and consider the set
\Centerline{$\Tau=\{E:E\subseteq\Bbb R,\,f^{-1}[E]\in\Sigma_D\}$.}
\noindent Then $\Tau$ is a $\sigma$-algebra of subsets of $\Bbb R$.
\Prf\ {(i)} $f^{-1}[\emptyset]=\emptyset\in\Sigma_D$, so
$\emptyset\in\Tau$. {(ii)} If $E\in\Tau$, then
$f^{-1}[\Bbb R\setminus E]=D\setminus f^{-1}[E]\in\Sigma_D$ so
$\Bbb R\setminus E\in\Tau$.
{(iii)} If $\langle E_n\rangle_{n\in\Bbb N}$ is a sequence in
$\Tau$, then
$f^{-1}[\bigcup_{n\in\Bbb N}E_n]
=\bigcup_{n\in\Bbb N}f^{-1}[E_n]\in\Sigma_D$ because $\Sigma_D$ is a
$\sigma$-algebra, so $\bigcup_{n\in\Bbb N}E_n\in\Tau$.\ \Qed
Next, $\Tau$ contains all sets of the form $H_a=\ooint{-\infty,a}$ for
$a\in\Bbb R$, by the definition of measurability of $f$. The result
follows by arguments already used in 114G above.
First, all open subsets of $\Bbb R$
belong to $\Tau$. \Prf\ Let $G\subseteq\Bbb R$ be open. Let
$K\subseteq\Bbb Q\times\Bbb Q$ be the set of pairs $(q,q')$ of rational
numbers such that $\coint{q,q'}\subseteq G$. $K$
is countable. Also, every $\coint{q,q'}$ belongs to $\Tau$, being
$H_{q'}\setminus H_q$. So
$G'=\bigcup_{(q,q')\in K}\coint{q,q'}\in\Tau$.
By the definition of $K$, $G'\subseteq G$. On the other hand, if $x\in
G$, there is a $\delta>0$
such that $\ooint{x-\delta,x+\delta}\subseteq G$.
Now there are rational numbers $q\in\ocint{x-\delta,x}$ and
$q'\in\ocint{x,x+\delta}$, so that $(q,q')\in K$ and $x\in
\coint{q,q'}\subseteq G'$.
As $x$ is arbitrary, $G=G'$ and $G\in\Tau$.\ \Qed
Finally, $\Tau$ is a
$\sigma$-algebra of subsets of $\Bbb R$ including the family of open
sets, so must contain every Borel set, by the definition of Borel set
(111G).
\medskip
{\bf (g)} If $a\in\Bbb R$, then $\{y:h(y)<a\}$ is of the form
$E\cap\dom h$, where $E$ is a Borel subset of $\Bbb R$.
Next, $f^{-1}[E]$ is of
the form $F\cap\dom f$, where $F\in\Sigma$, by (f) above. So
\Centerline{$\{x:(hf)(x)<a\}=F\cap\dom hf\in\Sigma_{\dom hf}$.}
\noindent As $a$ is
arbitrary, $hf$ is measurable.
\medskip
{\bf (h)} The point is that $\Sigma_{A\cap\dom f}=\{E\cap
A:E\in\Sigma_{\dom f}\}$. So if $a\in\Bbb R$,
\Centerline{$\{x:(f\restr
A)(x)<a\}=A\cap\{x:f(x)<a\}\in\Sigma_{\dom(f\restr A)}$.}
}%end of proof of 121E
\cmmnt{\medskip
\noindent{\bf Remarks} Of course part (c) of this theorem is just a
matter of putting (a) and (d) together, while (e) is a consequence of
(d), (g) and the fact that continuous functions are Borel measurable
(121Db).
I hope you will recognise the technique in the proof of part (d) as a
version of arguments which may be used to prove that the limit of a
product is the product of the limits, or that the product of continuous
functions is continuous. In fact (b) and (d) here, as well as the
theorems on sums and products of limits, are consequences of the fact
that addition and multiplication are continuous functions. In
121K I give a general result which may be used to exploit such
facts.
Really, part (f) here is the essence of the concept of `measurable'
real-valued function. The point of the definition in 121B-121C is that
the Borel $\sigma$-algebra of $\Bbb R$ can be generated by any of the
families $\{\ooint{-\infty,a}:a\in\Bbb R\}$,
$\{\ocint{-\infty,a}:a\in\Bbb R\},\ldots$. (See 121Yc(ii).)
There are many routes covering this territory in rather
fewer words than I have used, at the cost of slightly greater
abstraction.
}%end of comment
\leader{121F}{Theorem} Let $X$ be a set and $\Sigma$ a $\sigma$-algebra
of
subsets of $X$. Let $\langle f_n\rangle_{n\in\Bbb N}$ be a sequence of
$\Sigma$-measurable real-valued functions with domains included in $X$.
(a) Define a function $\lim_{n\to\infty}f_n$ by writing
\Centerline{$(\lim_{n\to\infty}f_n)(x)=\lim_{n\to\infty}f_n(x)$}
\noindent for all those
$x\in\bigcup_{n\in\Bbb N}\bigcap_{m\ge n}\dom f_m$ for which the limit exists in $\Bbb R$. Then $\lim_{n\to\infty}f_n$ is
$\Sigma$-measurable.
(b) Define a function $\sup_{n\in\Bbb N}f_n$ by writing
\Centerline{$(\sup_{n\in\Bbb N}f_n)(x)=\sup_{n\in\Bbb N}f_n(x)$}
\noindent for all those $x\in\bigcap_{n\in\Bbb N}\dom f_n$ for which the
supremum exists in $\Bbb R$. Then $\sup_{n\in\Bbb N}f_n$ is
$\Sigma$-measurable.
(c) Define a function $\inf_{n\in\Bbb N}f_n$ by writing
\Centerline{$(\inf_{n\in\Bbb N}f_n)(x)=\inf_{n\in\Bbb N}f_n(x)$}
\noindent for all those $x\in\bigcap_{n\in\Bbb N}\dom f_n$ for which the
infimum exists in $\Bbb R$. Then $\inf_{n\in\Bbb N}f_n$ is
$\Sigma$-measurable.
(d) Define a function $\limsup_{n\to\infty}f_n$ by writing
\Centerline{$(\limsup_{n\to\infty}f_n)(x)=\limsup_{n\to\infty}f_n(x)$}
\noindent for all those
$x\in\bigcup_{n\in\Bbb N}\bigcap_{m\ge n}\dom f_m$ for which the
$\limsup$ exists in $\Bbb R$. Then $\limsup_{n\to\infty}f_n$ is
$\Sigma$-measurable.
(e) Define a function $\liminf_{n\to\infty}f_n$ by writing
\Centerline{$(\liminf_{n\to\infty}f_n)(x)=\liminf_{n\to\infty}f_n(x)$}
\noindent for all those $x\in\bigcup_{n\in\Bbb N}\bigcap_{m\ge n}\dom
f_m$ for which the $\liminf$ exists in $\Bbb R$. Then
$\liminf_{n\in\Bbb N}f_n$ is
$\Sigma$-measurable.
\proof{ For $n\in\Bbb N$, $a\in\Bbb R$ choose
$H_n(a)\in\Sigma$ such that $\{x:f_n(x)\le a\}=H_n(a)\cap \dom f_n$.
The proofs are now a matter of observing the following facts:
\medskip
{\bf (a)}
$\{x:(\lim_{n\to\infty}f_n)(x)\le a\}
=\dom(\lim_{n\to\infty}f_n)
\cap\bigcap_{k\in\Bbb N}\bigcup_{n\in\Bbb N}
\bigcap_{m\ge n}H_m(a+2^{-k})$;
\medskip
{\bf (b)} $\{x:(\sup_{n\in\Bbb N}f_n)(x)\le a\}=\dom(\sup_{n\in\Bbb
N}f_n)\cap\bigcap_{n\in\Bbb N}H_n(a)$;
\medskip
{\bf (c)} $\inf_{n\in\Bbb N}f_n=-\sup_{n\in\Bbb N}(-f_n)$;
\medskip
{\bf (d)} $\limsup_{n\to\infty}f_n
=\lim_{n\to\infty}\sup_{m\in\Bbb N}f_{m+n}$;
\medskip
{\bf (e)} $\liminf_{n\to\infty}f_n=-\limsup_{n\to\infty}(-f_n)$.
}%end of proof of 121F
\cmmnt{
\leader{121G}{Remarks} It is at this point that we first
encounter clearly the problem of functions which are not defined
everywhere. (The quotient $f/g$ of 121Ee also need not be defined
everywhere on the
common domain of $f$ and $g$, but it is less important and more
easily dealt with.) The whole point of the theory of measure and
integration, since Lebesgue, is that we can deal with limits of
sequences of functions; and the set on which $\lim_{n\to\infty}f_n(x)$
exists can be decidedly irregular, even for apparently well-behaved
functions $f_n$. (If you have encountered the theory of Fourier
series, then an appropriate example to think of is the sequence of
partial sums $f_n(x)={1\over 2}a_0+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$
of a Fourier series in which $\sum_{k=1}^{\infty}|a_k|+|b_k|=\infty$, so
that the series is not uniformly absolutely summable, but may be
conditionally summable at certain points.)
I have tried to make it clear what domains I mean
to attach to the functions $\sup_{n\in\Bbb N}f_n$,
$\lim_{n\to\infty}f_n$, etc. The guiding principle is that they should
be the set of all $x\in X$ for which the defining formulae
$\sup_{n\in\Bbb N}f_n(x)$, $\lim_{n\to\infty}f_n(x)$ can be interpreted
as real numbers. (As I noted in 121C, I am for the time being avoiding
`$\infty$' as a value of a function, though it gives little
difficulty, and some formulae are more naturally interpreted by allowing
it.) But in the case of $\lim$, $\limsup$, $\liminf$ it should be
noted that I am using the restrictive definition, that
$\lim_{n\to\infty}a_n$ can be regarded as existing only when there is
some $n\in\Bbb N$ such that $a_m$ is defined for every $m\ge n$. There
are occasions when it would be more natural to admit the limit when we
know only that $a_m$ is defined for infinitely many $m$; but such a
convention could make 121Fa false, unless care was taken.
As in 111E-111F, we can use the ideas of parts (b), (c) here to discuss
functions of the form $\sup_{k\in K}f_k$, $\inf_{k\in K}f_k$ for any
family $\langle f_k\rangle_{k\in K}$ of measurable functions indexed by
a non-empty countable set $K$.
In this theorem and the last, the functions $f$, $g$, $f_n$ have been
permitted to have arbitrary domains, and consequently there is nothing
that can be said about the domains of the constructed functions.
However, it is of course the case that if the original functions have
measurable domains, so do the functions constructed from them by the
rules I propose. I spell out the details in the next proposition.
}%end of comment
\leader{121H}{Proposition} Let $X$ be a set and $\Sigma$ a
$\sigma$-algebra
of subsets of $X$; let $f$, $g$ and $f_n$, for $n\in\Bbb N$, be
$\Sigma$-measurable real-valued functions whose domains belong to
$\Sigma$. Then all the functions
\Centerline{$f+g$, \quad$f\times g$, \quad$f/g$,}
\Centerline{$\sup_{n\in\Bbb N}f_n$, \quad$\inf_{n\in\Bbb N}f_n$,
\quad$\lim_{n\to\infty}f_n$, \quad$\limsup_{n\to\infty}f_n$,
\quad$\liminf_{n\to\infty}f_n$}
\noindent have domains belonging to $\Sigma$. Moreover, if $h$ is a
Borel measurable real-valued function defined on a Borel subset of
$\Bbb R$, then $\dom hf\in\Sigma$.
\proof{ For the first two, we have $\dom(f+g)=\dom(f\times
g)=\dom f\cap \dom g$. Next, if $E$ is a Borel subset of $\Bbb R$,
there is an $H\in\Sigma$ such that
$f^{-1}[E]=H\cap\dom f$; so
$f^{-1}[E]\in\Sigma$. Thus
\Centerline{$\dom hf=f^{-1}[\dom h]\in\Sigma$.}
\noindent Setting $h(a)=1/a$ for $a\in\Bbb R\setminus\{0\}$, we see that
$\dom(1/f)\in\Sigma$. ($\dom h=\Bbb R\setminus\{0\}$ is a Borel set
because it is open.) Similarly, $\dom(1/g)$ and $\dom(f/g)=\dom
f\cap\dom(1/g)$ belong to $\Sigma$.
Now for the infinite combinations. Set
$H_n(a)=\{x:x\in\dom f_n,\,f_n(x)<a\}$ for
$n\in\Bbb N$, $a\in\Bbb R$; as just explained, every $H_n(a)$
belongs to $\Sigma$. Now
\Centerline{$\dom(\sup_{n\in\Bbb N}f_n)
=\bigcup_{m\in\Bbb N}\bigcap_{n\in\Bbb N}H_n(m)\in\Sigma$.}
\noindent Next, $|f_m-f_n|$ is
measurable, with domain in $\Sigma$, for all $m$, $n\in\Bbb N$ (applying
the results above to $-f_n=-1\cdot f_n$, $f_m-f_n=f_m+(-f_n)$ and
$|f_m-f_n|=|\,\,|\circ(f_m-f_n)$), so
\Centerline{$G_{mnk}
=\{x:x\in\dom f_m\cap\dom f_n,\,|f_m(x)-f_n(x)|\le 2^{-k}\}\in\Sigma$}
\noindent for all $m$, $n$, $k\in\Bbb N$. Accordingly
\Centerline{$\dom(\lim_{n\to\infty}f_n)
=\{x:\Exists n,\,\langle f_m(x)\rangle_{m\ge n}$ is Cauchy$\}
=\bigcap_{k\in\Bbb N}\bigcup_{n\in\Bbb N}\bigcap_{m\ge n}G_{mnk}
\in\Sigma$.}
Manipulating the above results as in (c), (d) and (e) of the proof of
121F, we easily complete the proof.
}%end of proof of 121H
\cmmnt{\medskip
\noindent{\bf Remark} Note the use of the General Principle of
Convergence in the proof above. I am not sure whether this will strike
you as `natural', and there are alternative methods; but the formula
\Centerline{$\{x:\lim_{n\to\infty}f_n(x)$ exists in $\Bbb R\}
=\{x:\sequencen{f_n(x)}$ is Cauchy$\}$}
\noindent is one worth storing in your long-term memory.
}%end of comment
\leader{*121I}{}\cmmnt{ I end this section with two results which can be safely passed by on first reading, but which you will need at some point
to master if you wish to go farther into measure theory than the present
chapter, as both are essential parts of the concept of `measurable
function'.
\medskip
\noindent}{\bf Proposition} Let $X$ be a set and $\Sigma$ a
$\sigma$-algebra of subsets of $X$. Let $D$ be a subset of $X$ and
$f:D\to\Bbb R$ a function. Then $f$ is measurable iff there is a
measurable function $h:X\to\Bbb R$ extending $f$.
\proof{{\bf (a)} If $h:X\to\Bbb R$ is measurable and $f=h\restr D$, then
$f$ is measurable by 121Eh.
\medskip
{\bf (b)} Now suppose that $f$ is measurable.
\medskip
\quad{\bf (i)} For each
$q\in\Bbb Q$, the set $D_q=\{x:x\in D,\,f(x)\le q\}$ belongs to the subspace $\sigma$-algebra $\Sigma_D$, that is, there is an $E_q\in\Sigma$ such that $D_q=E_q\cap D$. Set
\Centerline{$F=X\setminus\bigcup_{q\in\Bbb Q}E_q$,}
\Centerline{$G=\bigcap_{n\in\Bbb N}\bigcup_{q\in\Bbb Q,q\le -n}E_q$;}
\noindent then both $F$ and $G$ belong to $\Sigma$, and are disjoint
from $D$. \Prf\ If $x\in D$, there is a $q\in\Bbb Q$ such that
$f(x)\le q$, so that $x\in E_q$ and $x\notin F$. Also there is an
$n\in\Bbb N$ such that $f(x)>-n$, so that $x\notin E_{q'}$ for $q'\le-n$
and $x\notin G$.\ \Qed
Set $H=X\setminus(F\cup G)\in\Sigma$. For $x\in H$,
\Centerline{$\{q:q\in\Bbb Q,\,x\in E_q\}$}
\noindent is non-empty and bounded below, so we may set
\Centerline{$h(x)=\inf\{q:x\in E_q\}$;}
\noindent for $x\in F\cup G$, set $h(x)=0$. This defines
$h:X\to\Bbb R$.
\medskip
\quad{\bf (ii)} $h(x)=f(x)$ for $x\in D$. \Prf\ As remarked above, $x\in H$. If $q\in\Bbb Q$ and $x\in E_q$, then $f(x)\le q$; consequently $h(x)\ge f(x)$. On the other
hand, given $\epsilon>0$, there is a
$q\in\Bbb Q\cap[f(x),f(x)+\epsilon]$, and now $x\in E_q$, so
$h(x)\le q\le f(x)+\epsilon$; as $\epsilon$ is arbitrary,
$h(x)\le f(x)$.\ \Qed
\medskip
\quad{\bf (iii)} $h$ is measurable. \Prf\ If $a>0$ then
\Centerline{$\{x:h(x)<a\}=(H\cap\bigcup_{q<a}E_q)\cup(F\cup
G)\in\Sigma$,}
\noindent while if $a\le 0$
\Centerline{$\{x:h(x)<a\}=H\cap\bigcup_{q<a}E_q\in\Sigma$. \Qed}
\noindent This completes the proof.
}%end of proof of 121I
\leader{*121J}{}\cmmnt{ The next proposition may illuminate 121E, as well as
being indispensable for the work of Volume 2. I start with a useful
description of the Borel sets of $\BbbR^r$.
\medskip
\noindent}{\bf Lemma} Let $r\ge 1$ be an integer, and write $\Cal J$ for
the family of subsets of $\BbbR^r$ of the form
$\{x:\xi_i\le\alpha\}$ where $i\le r$, $\alpha\in\Bbb R$, writing
$x=(\xi_1,\ldots,\xi_r)$, as in \S115. Then the
$\sigma$-algebra of subsets of $\BbbR^r$ generated by $\Cal J$ is
precisely the $\sigma$-algebra $\Cal B$ of Borel subsets of $\BbbR^r$.
\proof{{\bf (a)} All the sets in $\Cal J$ are closed, so must
belong to $\Cal B$; writing $\Sigma$ for the $\sigma$-algebra
generated by $\Cal J$, we must have $\Sigma\subseteq\Cal B$.
\medskip
{\bf (b)} The next step is to observe that all half-open
intervals of the form
\Centerline{$\ocint{a,b}
=\{x:\alpha_i<\xi_i\le\beta_i\Forall i\le r\}$}
\noindent belong to $\Sigma$; this is because
\Centerline{$\ocint{a,b}=\bigcap_{i\le
r}(\{x:\xi_i\le\beta_i\}\setminus\{x:\xi_i\le\alpha_i\})$.}
\noindent It follows that all open sets belong to $\Sigma$.
\Prf\ (Compare the proof of 121Ef.) Let $G\subseteq\BbbR^r$ be an open
set. Let $\Cal I$ be the set
of all intervals of the form
$\ocint{q,q'}$ which are included in $G$, where $q$, $q'\in\BbbQ^r$.
Then $\Cal
I$ is a countable subset of $\Sigma$, so (because $\Sigma$ is a
$\sigma$-algebra) $\bigcup\Cal I\in\Sigma$. By the definition of
$\Cal I$, $\bigcup\Cal I\subseteq G$. But also, if $x\in G$, there is a $\delta>0$ such that the open ball $U(x,\delta)$ with centre $x$ and radius $\delta$ is included in $G$ (1A2A).
Now, for each $i\le r$, we can find rational numbers $\alpha_i$,
$\beta_i$ such that
\Centerline{$\xi_i-\Bover{\delta}r
\le\alpha_i<\xi_i\le\beta_i<\xi_i+\Bover{\delta}r$,}
\noindent so that
\Centerline{$x\in\ocint{a,b}\subseteq U(x,\delta)\subseteq G$}
\noindent and $x\in\ocint{a,b}\in\Cal I$. Thus $x\in\bigcup\Cal I$.
As $x$ is arbitrary, $G\subseteq\bigcup\Cal I$ and $G=\bigcup\Cal
I\in\Sigma$.\ \Qed
\medskip
{\bf (c)} Thus $\Sigma$ is a $\sigma$-algebra of sets containing
every open set, and must include $\Cal B$, the smallest such
$\sigma$-algebra.
}%end of proof of 121J
\cmmnt{\medskip
\noindent{\bf Remark} Compare the proof of 115G.
}%end of comment
\leader{*121K}{Proposition} Let $X$ be a set and $\Sigma$ a
$\sigma$-algebra of subsets of $X$. Let $r\ge 1$ be an integer, and
$f_1,\ldots,f_r$ measurable functions defined on subsets of $X$.
Set $D=\bigcap_{i\le r}\dom f_i$ and for $x\in D$ set
$f(x)=(f_1(x),\ldots,f_r(x))\in\BbbR^r$. Then
(a) for any Borel set $E\subseteq\BbbR^r$, $f^{-1}[E]$ belongs to the subspace $\sigma$-algebra $\Sigma_D$;
(b) if $h$ is a Borel measurable function from a subset $\dom h$ of
$\BbbR^r$ to $\Bbb R$, then the composition $hf$ is measurable.
\proof{{\bf (a)(i)} Consider the set
\Centerline{$\Tau=\{E:E\subseteq\BbbR^r,\,f^{-1}[E]\in\Sigma_D\}$.}
\noindent Then $\Tau$ is a $\sigma$-algebra of subsets of $\BbbR^r$.
\Prf\ (Compare 121Ef.) {\bf ($\pmb{\alpha}$)}
$f^{-1}[\emptyset]=\emptyset\in\Sigma_D$, so
$\emptyset\in\Tau$. {\bf ($\pmb{\beta}$)} If $E\in\Tau$,
then $f^{-1}[\BbbR^r\setminus
E]=D\setminus f^{-1}[E]\in\Sigma_D$ so $\Bbb R\setminus E\in\Tau$.
{\bf ($\pmb{\gamma}$)} If $\langle E_n\rangle_{n\in\Bbb N}$ is a
sequence in $\Tau$, then
$f^{-1}[\bigcup_{n\in\Bbb N}E_n]
=\bigcup_{n\in\Bbb N}f^{-1}[E_n]\in\Sigma_D$ because $\Sigma_D$ is a
$\sigma$-algebra, so $\bigcup_{n\in\Bbb N}E_n\in\Tau$.\ \Qed
\medskip
\quad{\bf (ii)}
Next, for any $i\le r$ and $\alpha\in\Bbb R$, $J=\{x:\xi_i\le\alpha\}$
belongs to $\Tau$, because
\Centerline{$f^{-1}[J]
=\{x:x\in D,\, f_i(x)\le \alpha\}\in\Sigma_D$.}
\noindent So $\Tau$ includes the family $\Cal J$ of 121J and therefore
includes the $\sigma$-algebra $\Cal B$ generated by $\Cal J$, that is,
contains every Borel subset of $\BbbR^r$.
\medskip
{\bf (b)} Now the rest follows by the argument of 121Eg. If
$a\in\Bbb R$, then $\{y:y\in\dom h,\,h(y)<a\}$ is of the form $E\cap\dom h$, where
$E$ is a
Borel subset of $\BbbR^r$, so $\{x:x\in\dom(hf),\,(hf)(x)<a\}
=f^{-1}[E]\cap\dom(hf)$ belongs to
$\Sigma_{\dom hf}$.
}%end of proof of 121K
\exercises{
\leader{121X}{Basic exercises $\pmb{>}$(a)}
%\spheader 121Xa
Let $X$ be a set, $\Sigma$ a $\sigma$-algebra of
subsets of $X$, and $D\subseteq X$. Let $\sequencen{D_n}$ be a
partition of $D$ into relatively measurable sets and $\sequencen{f_n}$
a sequence of measurable real-valued functions such that
$D_n\subseteq\dom f_n$ for each $n$. Define $f:D\to\Bbb R$ by setting
$f(x)=f_n(x)$ whenever $n\in\Bbb N$, $x\in D_n$. Show that $f$ is
measurable.
%121C
\spheader 121Xb Let $X$ be a set and $\Sigma$ a
$\sigma$-algebra of subsets of $X$. If $f$ and $g$ are measurable
real-valued functions defined on subsets of $X$, show that $f^+$, $f^-$,
$f\wedge g$ and $f\vee g$ are measurable, where
\Centerline{$f^+(x)=\max(f(x),0)$ for $x\in\dom f$,}
\Centerline{$f^-(x)=\max(-f(x),0)$ for $x\in\dom f$,}
\Centerline{$(f\vee g)(x)=\max(f(x),g(x))$ for $x\in\dom f\cap\dom g$,}
\Centerline{$(f\wedge g)(x)=\min(f(x),g(x))$ for
$x\in\dom f\cap\dom g$.}
%121E
\sqheader 121Xc Let $(X,\Sigma,\mu)$ be a measure space. Write
$\eusm L^0$ for the set of real-valued functions $f$ such that
($\alpha$) $\dom f$ is a conegligible subset of $X$ ($\beta$) there is a
conegligible set $E\subseteq X$ such that $f\restr E$ is measurable.
(i) Show that the set $E$ of clause ($\beta$) in the last sentence may
be taken to belong to $\Sigma$ and be included in $\dom f$. (ii) Show
that if $f$, $g\in\eusm L^0$ and $c\in\Bbb R$, then $f+g$, $cf$,
$f\times g$, $|f|$, $f^+$, $f^-$, $f\wedge g$, $f\vee g$
all belong to $\eusm L^0$. (iii) Show that if $f$, $g\in\eusm L^0$ and
$g\ne 0$ a.e.\ then $f/g\in\eusm L^0$. (iv) Show that if
$\sequencen{f_n}$ is a sequence in $\eusm L^0$ then the functions
\Centerline{$\lim_{n\to\infty}f_n$,\quad$\sup_{n\in\Bbb N}f_n$,
\quad$\inf_{n\in\Bbb N}f_n$,\quad $\limsup_{n\to\infty}f_n$,
\quad$\liminf_{n\to\infty}f_n$}
\noindent belong to $\eusm L^0$ whenever they are defined almost
everywhere as real-valued functions. (v) Show that if $f\in\eusm L^0$
and $h:\Bbb R\to\Bbb R$ is Borel measurable then $hf\in\eusm L^0$.
%121F
\sqheader 121Xd Consider the following four families of subsets
of $\Bbb R$:
\Centerline{$\Cal A_1=\{\ooint{-\infty,a}:a\in\Bbb R\}$,
\quad$\Cal A_2=\{\ocint{-\infty,a}:a\in\Bbb R\}$,}
\Centerline{$\Cal A_3=\{\ooint{a,\infty}:a\in\Bbb R\}$,
\quad$\Cal A_4=\{\coint{a,\infty}:a\in\Bbb R\}$.}
\noindent Show that for each $j$ the $\sigma$-algebra of subsets of
$\Bbb R$ generated by $\Cal A_j$ is the $\sigma$-algebra of Borel sets.
%121J
\spheader 121Xe Let $D$ be any subset of $\BbbR^r$, where $r\ge 1$.
Write $\frak T_D$ for the set $\{G\cap D:G\subseteq\BbbR^r$ is
open$\}$. (i) Show that $\frak T_D$ satisfies the properties of open
sets listed in 1A2B. (ii) Let $\Cal B$ be the
$\sigma$-algebra of Borel sets
in $\BbbR^r$, and $\Cal B(D)$ the subspace $\sigma$-algebra on $D$.
Show that $\Cal B(D)$ is just the $\sigma$-algebra of subsets of $D$
generated by $\frak T_D$. \Hint{($\alpha$) observe that
$\frak T_D\subseteq\Cal B(D)$ ($\beta$) consider
$\{E:E\subseteq\BbbR^r,\,E\cap D$
belongs to the $\sigma$-algebra generated by $\frak T_D\}$.}
%121K
\spheader 121Xf Let $(X,\Sigma,\mu)$ be a measure space and
define $\eusm L^0$ as in 121Xc. Show that if $f_1,\ldots,f_r$ belong
to $\eusm L^0$ and $h:\BbbR^r\to\Bbb R$ is Borel measurable then
$h(f_1,\ldots,f_r)$ belongs to $\eusm L^0$.
%121Xc 121K
\leader{121Y}{Further exercises (a)}
%\spheader 121Ya
Let $X$ and $Y$ be sets, $\Sigma$ a $\sigma$-algebra of subsets of
$X$, $\phi:X\to Y$ a function and $g$ a real-valued function defined on a
subset of $Y$. Set
$\Tau=\{F:F\subseteq Y,\,\phi^{-1}[F]\in\Sigma\}$; then $\Tau$ is a
$\sigma$-algebra of subsets of $Y$ (see 111Xc). (i) Show that if $g$ is
$\Tau$-measurable then $g\phi$ is $\Sigma$-measurable.
(ii) Give an example in which $g\phi$ is
$\Sigma$-measurable but $g$ is not $\Tau$-measurable.
(iii) Show that if
$g\phi$ is $\Sigma$-measurable and {\it either} $\phi$ is injective
{\it or} $\dom(g\phi)\in\Sigma$ {\it or} $\phi[X]\subseteq\dom g$,
then $g$ is $\Tau$-measurable.\footnote{I am grateful to P.Wallace Thompson
for pointing out the error in the original version of this exercise.}
%121C
\spheader 121Yb Let $X$ and $Y$ be sets, $\Tau$ a
$\sigma$-algebra of subsets of $Y$ and $\phi:X\to Y$ a function. Set
$\Sigma=\{\phi^{-1}[F]:F\in\Tau\}$, as in 111Xd. Show that a
function $f:X\to\Bbb R$ is $\Sigma$-measurable iff there is a
$\Tau$-measurable function $g:Y\to\Bbb R$ such that $f=g\phi$.
%121I
\spheader 121Yc Let $X$ and $Y$ be sets and $\Sigma$, $\Tau$
$\sigma$-algebras of subsets of $X$, $Y$ respectively. I say that a
function $\phi:X\to Y$ is $(\Sigma,\Tau)${\bf-measurable} if
$\phi^{-1}[F]\in\Sigma$ for every $F\in\Tau$. (i) Show that if
$\Sigma$, $\Tau$, $\Upsilon$ are $\sigma$-algebras of subsets of $X$,
$Y$, $Z$ respectively, and $\phi:X\to Y$ is $(\Sigma,\Tau)$-measurable,
$\psi:Y\to Z$ is $(\Tau,\Upsilon)$-measurable, then $\psi\phi:X\to Z$ is
$(\Sigma,\Upsilon)$-measurable.
(ii) Suppose that $\Cal A\subseteq\Tau$ is such that $\Tau$ is the
$\sigma$-algebra of subsets of $Y$ generated by $\Cal A$ (111Gb). Show
that $\phi:X\to Y$ is $(\Sigma,\Tau)$-measurable iff
$\phi^{-1}[A]\in\Sigma$ for every $A\in\Cal A$.
(iii) For $r\ge 1$, write
$\Cal B_r$ for the
$\sigma$-algebra of Borel subsets of $\BbbR^r$. Show that if $X$ is
any set and $\Sigma$ is a $\sigma$-algebra of subsets of $X$, then a
function $f:X\to\BbbR^r$ is $(\Sigma,\Cal B_r)$-measurable iff
$\pi_if:X\to\Bbb R$ is $(\Sigma,\Cal B_1)$-measurable for every
$i\le r$, writing $\pi_i(x)=\xi_i$ for $i\le r$,
$x=(\xi_1,\ldots,\xi_r)\in\BbbR^r$. (iv) Rewrite these ideas
for partially-defined functions.
%121+
\spheader 121Yd Let $X$ be a set and $\Sigma$ a $\sigma$-algebra
of subsets of $X$. For $r\ge 1$, $D\subseteq X$ say that a function
$\phi:D\to\BbbR^r$ is {\bf measurable} if $\phi^{-1}[G]$ is relatively
measurable in $D$ for every open set $G\subseteq\BbbR^r$. If
$X=\BbbR^s$ and $\Sigma$ is the
$\sigma$-algebra $\Cal B_s$ of Borel subsets of $\BbbR^s$,
say that $\phi$ is {\bf Borel measurable}.
(i) Show that $\phi$ is measurable in this sense iff all its
coordinate functions $\phi_i:D\to\Bbb R$ are measurable in the sense of
121C, taking $\phi(x)=(\phi_i(x),\ldots,\phi_r(x))$ for $x\in D$. (In
particular, this definition agrees with 121C when $r=1$.)
(ii) Show that $\phi:D\to\BbbR^r$ is measurable iff it is
$(\Sigma,\Cal B_r)$-measurable in the sense of 121Yc.
(iii) Show that if $\phi:D\to\BbbR^r$ is measurable and
$\psi:E\to\BbbR^s$ is Borel measurable, where $E\subseteq\BbbR^r$,
then $\psi\phi:\phi^{-1}[E]\to\BbbR^s$ is measurable.
(iv) Show that any continuous function from a subset of
$\BbbR^s$ to $\BbbR^r$ is Borel measurable.
%121Yc
\spheader 121Ye Let $X$ be a set and $\theta$ an outer measure
on $X$; let $\mu$ be the measure defined from $\theta$ by
\Caratheodory's method, and $\Sigma$ its domain. Suppose that
$f:X\to\Bbb R$ is a function such that
\Centerline{$\theta\{x:x\in A,\,f(x)\le a\}
+\theta\{x:x\in A,\,f(x)\ge b\}\le\theta A$}
\noindent whenever $A\subseteq X$ and $a<b$ in $\Bbb R$. Show that $f$
is $\Sigma$-measurable. ({\it Hint\/}: suppose that $a\in\Bbb R$ and
$\theta A<\infty$. Set
\Centerline{$B_k=\{x:x\in A,\,
a+\Bover1{2k+2}\le f(x)\le a+\Bover1{2k+1}\}$,}
\Centerline{$B'_k=\{x:x\in A,\,
a+\Bover1{2k+3}\le f(x)\le a+\Bover1{2k+2}\}$}
\noindent for $k\in\Bbb N$. Show that
$\sum_{k=0}^{\infty}\theta B_k\le\theta A$,
and check a similar result for $B'_k$. Hence show that