forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt1a2.tex
166 lines (121 loc) · 5.84 KB
/
mt1a2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
\frfilename{mt1a2.tex}
\versiondate{21.11.03}
\copyrightdate{1994}
\def\chaptername{Appendix}
\def\sectionname{Open and closed sets in $\BbbR^r$}
\newsection{1A2}
\def\headlinesectionname{Open and closed sets in $\eightBbb R^r$}
In 111G I gave the definition of an open set in
$\Bbb R$ or $\BbbR^r$, and in 121D I used, in passing, some of the
basic properties of these sets; perhaps it will be helpful if I set out a tiny part of the elementary theory.
\leader{1A2A}{Open sets} Recall that a set $G\subseteq\Bbb R$ is {\bf
open} if for every $x\in G$
there is a $\delta>0$ such that $\ooint{x-\delta,x+\delta}\subseteq G$;
similarly, a set $G\subseteq\BbbR^r$ is {\bf open} if for every
$x\in G$ there is a $\delta>0$ such that $U(x,\delta)\subseteq G$, where
$U(x,\delta)=\{y:\|y-x\|<\delta\}$, writing
$\|z\|$ for $\sqrt{\zeta_1^2+\ldots+\zeta_r^2}$ if
$z=(\zeta_1,\ldots,\zeta_r)$. \cmmnt{Henceforth I give the arguments
for general $r$; if you are at present interested only in the
one-dimensional case, you should
have no difficulty in reading them as if $r=1$ throughout.}
\vleader{36pt}{1A2B}{The family of all open sets}
Let $\frak T$ be the family of open sets of $\BbbR^r$. \cmmnt{Then
$\frak T$ has the following properties.}
(a) $\emptyset\in\frak T$\cmmnt{, that is, the empty set is open}.
\prooflet{\Prf\ Because the definition of `$\emptyset$
is open' begins with `for every $x\in\emptyset$, $\ldots$', it must
be vacuously satisfied by the empty set.\ \Qed}
(b) $\BbbR^r\in\frak T$\cmmnt{, that is, the whole space under
consideration is an open set}. \prooflet{\Prf\
$U(x,1)\subseteq\BbbR^r$ for every $x\in\BbbR^r$.\ \Qed}
(c) If $G$, $H\in\frak T$ then $G\cap H\in\frak T$\cmmnt{; that is,
the intersection of two open sets is always an open set}.
\prooflet{\Prf\
Let $x\in G\cap H$. Then there are $\delta_1$, $\delta_2>0$ such that
$U(x,\delta_1)\subseteq G$ and $U(x,\delta_2)\subseteq H$. Set
$\delta=\min(\delta_1,\delta_2)>0$; then
\Centerline{$U(x,\delta)=\{y:\|y-x\|<\min(\delta_1,\delta_2)\}
=U(x,\delta_1)\cap U(x,\delta_2)\subseteq G\cap H$.}
\noindent As $x$ is
arbitrary, $G\cap H$ is open.\ \Qed}
(d) If $\Cal G\subseteq\frak T$, then
\Centerline{$\bigcup\Cal G=\{x:\,\exists\, G\in\Cal G,\,x\in G\}
\in\frak T$\dvro{.}{;}}
\noindent\cmmnt{that is, the union of any family of open sets is
open.} \prooflet{\Prf\ Let $x\in\bigcup\Cal G$. Then there is a
$G\in\Cal G$ such that
$x\in G$. Because $G\in\frak T$, there is a $\delta>0$ such that
\Centerline{$U(x,\delta)\subseteq G\subseteq\bigcup\Cal G$.}
\noindent As $x$ is arbitrary,
$\bigcup\Cal G\in\frak T$.\ \Qed}
\leader{1A2C}{Cauchy's inequality: Proposition} For all
$x$, $y\in\BbbR^r$,
$\|x+y\|\le\|x\|+\|y\|$.
\proof{ Express $x$ as $(\xi_1,\ldots,\xi_r)$, $y$ as
$(\eta_1,\ldots,\eta_r)$;
set $\alpha=\|x\|$, $\beta=\|y\|$. Then both $\alpha$ and $\beta$
are non-negative. If $\alpha=0$ then $\sum_{j=1}^r\xi_j^2=0$ so every
$\xi_j=0$ and $x=\tbf{0}$, so $\|x+y\|=\|y\|=\|x\|+\|y\|$; if
$\beta=0$, then $y=\tbf{0}$ and $\|x+y\|=\|x\|=\|x\|+\|y\|$.
Otherwise, consider
$$\eqalign{\alpha\beta\|x+y\|^2
&\le\alpha\beta\|x+y\|^2+\|\alpha y-\beta x\|^2\cr
&=\alpha\beta\sum_{j=1}^r(\xi_j+\eta_j)^2
+\sum_{j=1}^r(\alpha\eta_j-\beta\xi_j)^2\cr
&=\sum_{j=1}^r\alpha\beta\xi_j^2+\alpha\beta\eta_j^2
+\alpha^2\eta_j^2+\beta^2\xi_j^2\cr
&=\alpha^3\beta+\alpha\beta^3+\alpha^2\beta^2+\beta^2\alpha^2\cr
&=\alpha\beta(\alpha+\beta)^2
=\alpha\beta(\|x\|+\|y\|)^2.\cr}$$
\noindent Dividing both sides by $\alpha\beta$ and taking square roots
we have the result.
}%end of proof of 1A2C
\leader{1A2D}{Corollary} $U(x,\delta)$\cmmnt{, as defined in 1A2A,} is
open, for every $x\in\BbbR^r$ and $\delta>0$.
\proof{ If
$y\in U(x,\delta)$, then $\eta=\delta-\|y-x\|>0$. Now if $z\in
U(y,\eta)$,
\Centerline{$\|z-x\|=\|(z-y)+(y-x)\|
\le\|z-y\|+\|y-x\|<\eta+\|y-x\|=\delta$,}
\noindent and $z\in U(x,\delta)$; thus
$U(y,\eta)\subseteq U(x,\delta)$. As $y$ is arbitrary,
$U(x,\delta)$ is open.
}%end of proof of 1A2D
\leader{1A2E}{Closed sets: Definition} A set $F\subseteq\BbbR^r$ is
{\bf closed} if
$\BbbR^r\setminus F$ is open. \cmmnt{({\it Warning!} `Most'
subsets of
$\BbbR^r$ are neither open nor closed; two subsets of $\BbbR^r$,
viz., $\emptyset$ and $\BbbR^r$, are both open and closed.)
Corresponding to
the list in 1A2B, we have the following properties of the family $\Cal
F$ of closed subsets of $\BbbR^r$.}
\leader{1A2F}{Proposition} Let $\Cal F$ be the family of closed subsets of $\BbbR^r$.
(a) $\emptyset\in\Cal F$\prooflet{ (because
$\BbbR^r\in\frak T$)}.
(b) $\BbbR^r\in\Cal F$\prooflet{ (because $\emptyset\in\frak T$)}.
(c) If $E$, $F\in\Cal F$ then $E\cup F\in\Cal F$\dvro{.}{, because
\Centerline{$\BbbR^r\setminus(E\cup F)
=(\BbbR^r\setminus E)\cap(\BbbR^r\setminus F)\in\frak T$.}}
(d) If $\Cal E\subseteq\Cal F$ is a {\it non-empty} family of
closed sets, then
\Centerline{$\bigcap\Cal E
=\{x:x\in F\Forall F\in\Cal E\}\cmmnt{\mskip5mu =\BbbR^r\setminus\bigcupop_{F\in\Cal E}(\BbbR^r\setminus F)}\in\Cal F$.}
\cmmnt{\medskip
\noindent{\bf Remark} In (d), we need to assume that
$\Cal E\ne\emptyset$ to ensure that $\bigcap\Cal E\subseteq\BbbR^r$.
}%end of comment
\leader{1A2G}{}\cmmnt{ Corresponding to 1A2D, we have the following
fact:
\medskip
\noindent}{\bf Lemma} If $x\in\BbbR^r$ and $\delta\ge 0$ then
$B(x,\delta)=\{y:\|y-x\|\le\delta\}$ is closed.
\proof{ Set $G=\BbbR^r\setminus B(x,\delta)$. If $y\in G$, then
$\eta=\|y-x\|-\delta>0$; if $z\in U(y,\eta)$, then
\Centerline{$\delta+\eta=\|y-x\|\le\|y-z\|+\|z-x\|<\eta+\|z-x\|$,}
\noindent so $\|z-x\|>\delta$ and $z\in G$. So
$U(y,\eta)\subseteq G$. As $y$ is arbitrary, $G$ is open and $B(x,\delta)$ is closed.
}%end of proof of 1A2G
\exercises{}
\discrpage