forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt212.tex
712 lines (531 loc) · 26.7 KB
/
mt212.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
\frfilename{mt212.tex}
\versiondate{10.9.04}
\def\chaptername{Taxonomy of measure spaces}
\def\sectionname{Complete spaces}
\newsection{212}
In the next two sections of this chapter I give brief accounts of the
theory of measure spaces possessing certain of the properties described
in \S211. I begin with `completeness'. I give the elementary
facts about complete measure spaces in 212A-212B; then I turn to the notion of
`completion' of a measure (212C) and its relationships with the other
concepts of measure theory introduced so far (212D-212G).
\leader{212A}{Proposition} Any measure space constructed
by \Caratheodory's method is complete.
\proof{ Recall that `\Caratheodory's method' starts from an arbitrary
outer measure $\theta:\Cal PX\to[0,\infty]$ and sets
\Centerline{$\Sigma=\{E:E\subseteq X,\,\theta A
=\theta(A\cap E)+\theta(A\setminus E)$ for every $A\subseteq X\}$,
\quad$\mu=\theta\restr\Sigma$}
\noindent (113C). In this case, if $B\subseteq E\in\Sigma$ and
$\mu E=0$, then $\theta B=\theta E=0$ (113A(ii)), so for any
$A\subseteq X$ we have
\Centerline{$\theta(A\cap B)+\theta(A\setminus B)
=\theta(A\setminus B)\le\theta A
\le\theta(A\cap B)+\theta(A\setminus B)$,}
\noindent and $B\in\Sigma$.
}%end of proof of 212A
\leader{212B}{Proposition} (a) If $(X,\Sigma,\mu)$ is a complete measure
space, then any conegligible subset of $X$ is measurable.
(b) Let $(X,\Sigma,\mu)$ be a complete measure space, and $f$ a
$[-\infty,\infty]$-valued function defined on a subset of $X$. If $f$ is
virtually measurable\cmmnt{ (that is, there is a
conegligible set $E\subseteq X$ such that $f\restr E$ is measurable)},
then $f$ is measurable.
(c) Let $(X,\Sigma,\mu)$ be a complete measure space, and $f$ a
real-valued function defined on a conegligible subset of $X$. Then the
following are equiveridical, that is, if one is true so are the others:
\quad (i) $f$ is integrable;
\quad(ii) $f$ is measurable and $|f|$ is integrable;
\quad(iii) $f$ is measurable and there is an integrable function $g$
such that $|f|\leae g$.
\proof{{\bf (a)} If $E$ is conegligible, then $X\setminus E$ is
negligible, therefore measurable, and $E$ is measurable.
\medskip
{\bf (b)} Let $a\in\Bbb R$. Then there is an $H\in\Sigma$ such that
\Centerline{$\{x:(f\restr E)(x)\le a\}=H\cap\dom(f\restr E)
=H\cap E\cap\dom f$.}
\noindent Now $F=\{x:x\in\dom f\setminus E,\,f(x)\le a\}$ is a subset of
the negligible set $X\setminus E$, so is measurable, and
\Centerline{$\{x:f(x)\le a\}=(F\cup H)\cap\dom f\in\Sigma_{\dom f}$,}
\noindent writing $\Sigma_D=\{D\cap E:E\in\Sigma\}$, as in 121A. As
$a$ is arbitrary, $f$ is measurable (135E).
\medskip
{\bf (c)(i)$\Rightarrow$(ii)} If $f$ is integrable, then by 122P $f$ is
virtually measurable and by 122Re $|f|$ is integrable. By (b) here,
$f$ is measurable, so (ii) is true.
\medskip
\quad{\bf (ii)$\Rightarrow$(iii)} is trivial.
\medskip
\quad{\bf (iii)$\Rightarrow$(i)} If $f$ is measurable and $g$ is integrable
and $|f|\leae g$, then $f$ is virtually measurable, $|g|$ is integrable and
$|f|\leae|g|$, so 122P tells us that $f$ is integrable.
}%end of proof of 212B
\leader{212C}{The completion of a measure} Let $(X,\Sigma,\mu)$ be any
measure space.
\header{212Ca}{\bf (a)} Let $\hat\Sigma$ be the family of those sets
$E\subseteq X$ such that there are $E'$, $E''\in\Sigma$ with
$E'\subseteq E\subseteq E''$ and $\mu(E''\setminus E')=0$. Then
$\hat\Sigma$ is a $\sigma$-algebra of subsets of $X$. \prooflet{\Prf\
{(i)} Of course $\emptyset$ belongs to
$\hat\Sigma$, because we can take $E'=E''=\emptyset$. {(ii)} If
$E\in\hat\Sigma$, take $E'$, $E''\in\Sigma$ such that
$E'\subseteq E\subseteq E''$ and $\mu(E''\setminus E')=0$.
Then
\Centerline{$X\setminus E''\subseteq X\setminus E
\subseteq X\setminus E'$,
\quad $\mu((X\setminus E')\setminus(X\setminus E''))
=\mu(E''\setminus E')=0$,}
\noindent so $X\setminus E\in\hat\Sigma$. {(iii)} If
$\sequencen{E_n}$ is a sequence in
$\hat\Sigma$, then for each $n$ choose $E'_n$, $E_n''\in\Sigma$ such
that $E'_n\subseteq E_n\subseteq E_n''$ and
$\mu(E_n''\setminus E'_n)=0$. Set
\Centerline{$E=\bigcup_{n\in\Bbb N}E_n$,
\quad$E'=\bigcup_{n\in\Bbb N}E'_n$,
\quad$E''=\bigcup_{n\in\Bbb N}E_n''$;}
\noindent then $E'\subseteq E\subseteq E''$ and
$E''\setminus E'\subseteq\bigcup_{n\in\Bbb N}(E_n''\setminus E'_n)$ is
negligible, so $E\in\hat\Sigma$. \Qed}
\spheader 212Cb For $E\in\hat\Sigma$, set
\Centerline{$\hat\mu E=\mu^*E
=\min\{\mu F:E\subseteq F\in\Sigma\}$\dvro{.}{}}
\cmmnt{
\noindent (132A). It is worth remarking at once that if $E\in\hat\Sigma$,
$E'$, $E''\in\Sigma$, $E'\subseteq E\subseteq E''$ and
$\mu(E''\setminus E')=0$, then $\mu E'=\hat\mu E=\mu E''$; this is
because
\Centerline{$\mu E'=\mu^*E'\le\mu^*E\le\mu^*E''=\mu E''
=\mu E'+\mu(E''\setminus E)=\mu E'$}
\noindent (recalling from 132A, or noting now, that $\mu^*A\le\mu^*B$
whenever $A\subseteq B\subseteq X$, and that $\mu^*$ agrees with $\mu$
on $\Sigma$).
}%end of comment
\header{212Cc}{\bf (c)}\cmmnt{ We now find that}
$(X,\hat\Sigma,\hat\mu)$ is a
measure space. \prooflet{\Prf\ (i) Of course $\hat\mu$, like $\mu$,
takes values in $[0,\infty]$. (ii) $\hat\mu\emptyset=\mu\emptyset=0$.
(iii) Let $\sequencen{E_n}$ be a disjoint sequence in
$\hat\Sigma$, with union $E$. For each $n\in\Bbb N$ choose $E_n'$,
$E_n''\in\Sigma$ such that $E_n'\subseteq E_n\subseteq E_n''$ and
$\mu(E_n''\setminus E_n')=0$. Set $E'=\bigcup_{n\in\Bbb N}E_n'$,
$E''=\bigcup_{n\in\Bbb N}E_n''$. Then (as in (a-iii) above)
$E'\subseteq E\subseteq E''$ and $\mu(E''\setminus E')=0$, so
\Centerline{$\hat\mu E=\mu E'=\sum_{n=0}^{\infty}\mu E_n'
=\sum_{n=0}^{\infty}\hat\mu E_n$}
\noindent because $\sequencen{E_n'}$, like $\sequencen{E_n}$, is
disjoint. \Qed}
\header{212Cd}{\bf (d)}\cmmnt{ The measure space}
$(X,\hat\Sigma,\hat\mu)$
is called the {\bf completion} of the measure space $(X,\Sigma,\mu)$;
\cmmnt{equally,} I will call $\hat\mu$ the {\bf completion} of $\mu$,
and occasionally\cmmnt{ (if it seems plain which null ideal is
under consideration)} I will call $\hat\Sigma$ the completion of
$\Sigma$. Members of $\hat\Sigma$ are sometimes called
{\bf $\mu$-measurable}.
\leader{212D}{}\cmmnt{There is something I had better check at once.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be any measure space.
Then $(X,\hat\Sigma,\hat\mu)$, as defined in 212C, is a complete measure
space and $\hat\mu$ is an extension of $\mu$; and
$(X,\hat\Sigma,\hat\mu)=(X,\Sigma,\mu)$ iff $(X,\Sigma,\mu)$ is
complete.
\proof{{\bf (a)} Suppose that $A\subseteq E\in\hat\Sigma$ and
$\hat\mu E=0$. Then (by 212Cb) there is an $E''\in\Sigma$ such that
$E\subseteq E''$ and $\mu E''=0$. Accordingly we have
\Centerline{$\emptyset\subseteq A\subseteq E''$,\quad
$\mu(E''\setminus\emptyset)=0$,}
\noindent so $A\in\hat\Sigma$. As $A$ is arbitrary, $\hat\mu$ is
complete.
\medskip
{\bf (b)} If $E\in\Sigma$, then of course $E\in\hat\Sigma$, because
$E\subseteq E\subseteq E$ and $\mu(E\setminus E)=0$; and $\hat\mu
E=\mu^*E=\mu E$. Thus $\Sigma\subseteq\hat\Sigma$ and $\hat\mu$
extends $\mu$.
\medskip
{\bf (c)} If $\mu=\hat\mu$ then of course
$\mu$ must be complete. If $\mu$ is complete,
and $E\in\hat\Sigma$, then there are $E'$, $E''\in\Sigma$ such that
$E'\subseteq E\subseteq E''$ and $\mu(E''\setminus E')=0$. But now
$E\setminus E'\subseteq E''\setminus E'$, so (because $(X,\Sigma,\mu)$
is complete) $E\setminus E'\in\Sigma$ and $E=E'\cup(E\setminus
E')\in\Sigma$. As $E$ is arbitrary, $\hat\Sigma\subseteq\Sigma$ and
$\hat\Sigma=\Sigma$ and $\mu=\hat\mu$.
}%end of proof of 212D
\vleader{72pt}{212E}{}\cmmnt{The importance of this construction is such that
it is worth spelling out some further elementary properties.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space, and
$(X,\hat\Sigma,\hat\mu)$ its completion.
(a) The outer measures $\hat\mu^*$, $\mu^*$ defined from $\hat\mu$ and
$\mu$ coincide.
(b) $\mu$, $\hat\mu$ give rise to the same negligible and conegligible
sets and the same sets of full outer measure.
(c) $\hat\mu$ is the only measure with domain $\hat\Sigma$ which agrees
with $\mu$ on $\Sigma$.
(d) A subset of $X$ belongs to $\hat\Sigma$ iff it is expressible as
$F\symmdiff A$ where $F\in\Sigma$ and $A$ is $\mu$-negligible.
\proof{{\bf (a)} Take any $A\subseteq X$. (i) If
$A\subseteq F\in\Sigma$, then $F\in\hat\Sigma$ and $\mu F=\hat\mu F$, so
\Centerline{$\hat\mu^*A\le\hat\mu F=\mu F$;}
\noindent as $F$ is arbitrary, $\hat\mu^*A\le\mu^*A$. (ii) If
$A\subseteq E\in\hat\Sigma$, there is an $E''\in\Sigma$ such that
$E\subseteq E''$ and $\mu E''=\hat\mu E$, so
\Centerline{$\mu^*A\le\mu E''=\hat\mu E$;}
\noindent as $E$ is arbitrary, $\mu^*A\le\hat\mu^*A$.
\medskip
{\bf (b)} Now, for $A\subseteq X$,
\Centerline{$A$ is $\mu$-negligible$\,\iff\mu^*A=0
\iff\hat\mu^*A=0\iff A$ is $\hat\mu$-negligible,}
$$\eqalign{A\text{ is }\mu&\text{-conegligible}
\,\iff\,\mu^*(X\setminus A)=0\cr
&\iff\,\hat\mu^*(X\setminus A)=0
\iff A\text{ is }\hat\mu\text{-conegligible}.\cr}$$
\noindent If $A$ has full outer measure for $\mu$, $F\in\hat\Sigma$ and $F\cap A=\emptyset$, then there is an $F'\in\Sigma$ such that $F'\subseteq F$ and $\mu F'=\hat\mu F$; as $F'\cap A=\emptyset$,
$F'$ is $\mu$-negligible and $F$ is $\hat\mu$-negligible; as $F$ is arbitrary, $A$ has full outer measure for $\hat\mu$. In the other direction, of course, if $A$ has full outer measure for
$\hat\mu$ then
\Centerline{$\mu^*(F\cap A)=\hat\mu^*(F\cap A)=\hat\mu F=\mu F$}
\noindent for every $F\in\Sigma$, so $A$ has full outer measure for $\mu$.
\medskip
{\bf (c)} If $\tilde\mu$ is any measure with domain $\hat\Sigma$
extending $\mu$, we must have
\Centerline{$\mu E'\le\tilde\mu E\le\mu E''$,
\quad $\mu E'=\hat\mu E=\mu E''$,}
\noindent so $\tilde\mu E=\hat\mu E$, whenever $E'$, $E''\in\Sigma$,
$E'\subseteq E\subseteq E''$ and $\mu(E''\setminus E')=0$.
\medskip
{\bf (d)(i)} If $E\in\hat\Sigma$, take $E'$, $E''\in\Sigma$ such that
$E'\subseteq E\subseteq E''$ and $\mu(E''\setminus E')=0$. Then
$E\setminus E'\subseteq E''\setminus E'$, so $E\setminus E'$ is
$\mu$-negligible, and $E=E'\symmdiff(E\setminus E')$ is the symmetric
difference of a member of $\Sigma$ and a negligible set.
\medskip
\quad{\bf (ii)} If $E=F\symmdiff A$, where $F\in\Sigma$ and
$A$ is $\mu$-negligible, take $G\in\Sigma$ such that $\mu G=0$ and
$A\subseteq G$; then $F\setminus G\subseteq E\subseteq F\cup G$ and
$\mu((F\cup G)\setminus(F\setminus G))=\mu G=0$, so $E\in\hat\Sigma$.
}%end of proof of 212E
\vleader{60pt}{212F}{}\cmmnt{Now let us consider integration with respect to
the completion of a measure.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space and
$(X,\hat\Sigma,\hat\mu)$ its completion.
(a) A $[-\infty,\infty]$-valued function $f$ defined on a subset of $X$
is $\hat\Sigma$-measurable iff it is $\mu$-virtually measurable.
(b) Let $f$ be a $[-\infty,\infty]$-valued function defined on a subset
of $X$. Then
$\int fd\mu=\int fd\hat\mu$ if either is defined in $[-\infty,\infty]$;
in particular, $f$ is $\mu$-integrable iff it is $\hat\mu$-integrable.
\proof{{\bf (a)(i)} Suppose that $f$ is a $[-\infty,\infty]$-valued
$\hat\Sigma$-measurable function. For $q\in\Bbb Q$ let
$E_q\in\hat\Sigma$ be such that $\{x:f(x)\le q\}=\dom f\cap E_q$, and
choose $E_q'$, $E_q''\in\Sigma$ such that
$E_q'\subseteq E_q\subseteq E_q''$ and $\mu(E_q''\setminus E_q')=0$.
Set $H=X\setminus\bigcup_{q\in\Bbb Q}(E_q''\setminus E_q')$; then $H$
is $\mu$-conegligible. For $a\in\Bbb R$ set
\Centerline{$G_a=\bigcup_{q\in\Bbb Q,q<a}E_q'\in\Sigma$;}
\noindent then
\Centerline{$\{x:x\in\dom(f\restr H),\,(f\restr H)(x)<a\}
=G_a\cap\dom(f\restr H)$.}
\noindent This shows that $f\restr H$ is
$\Sigma$-measurable, so that $f$ is $\mu$-virtually measurable.
\medskip
\quad{\bf (ii)} If $f$ is $\mu$-virtually measurable, then there is a
$\mu$-conegligible set $H\subseteq X$ such that $f\restr H$ is
$\Sigma$-measurable. Since $\Sigma\subseteq\hat\Sigma$, $f\restr H$ is
also $\hat\Sigma$-measurable. And $H$ is $\hat\mu$-conegligible, by
212Eb. But this means that $f$ is $\hat\mu$-virtually measurable,
therefore $\hat\Sigma$-measurable, by 212Bb.
\medskip
{\bf (b)(i)} Let $f:D\to[-\infty,\infty]$ be a function, where
$D\subseteq X$.
If either of $\int fd\mu$, $\int fd\hat\mu$ is defined in
$[-\infty,\infty]$, then $f$ is virtually measurable, and defined almost
everywhere, for one of the appropriate measures, and therefore for both
(putting (a) above together with 212Bb).
\medskip
\quad{\bf (ii)} Now suppose that $f$ is non-negative and
integrable either with respect to $\mu$ or with respect to $\hat\mu$.
Let $E\in\Sigma$ be a conegligible set included in $\dom f$ such
that $f\restr E$ is $\Sigma$-measurable. For $n\in\Bbb N$, $k\ge 1$ set
\Centerline{$E_{nk}=\{x:x\in E$, $f(x)\ge 2^{-n}k\}$;}
\noindent then each $E_{nk}$ belongs to $\Sigma$ and is of finite
measure for both $\mu$ and $\hat\mu$. (If $f$ is $\mu$-integrable,
\Centerline{$\hat\mu E_{nk}=\mu E_{nk}\le 2^n\int fd\mu$;}
\noindent if $f$ is $\hat\mu$-integrable,
\Centerline{$\mu E_{nk}=\hat\mu E_{nk}\le 2^n\int fd\hat\mu$.)}
\noindent So
\Centerline{$f_n=\sum_{k=1}^{4^n}2^{-n}\chi E_{nk}$}
\noindent is both $\mu$-simple and $\hat\mu$-simple, and
$\int f_nd\mu=\int f_nd\hat\mu$. Observe that, for $x\in E$,
$$\eqalign{f_n(x)
&=2^{-n}k\text{ if }k<4^n\text{ and }2^{-n}k\le f(x)<2^{-n}(k+1),\cr
&=2^n\text{ if }f(x)\ge 2^n.\cr}$$
\noindent Thus $\sequencen{f_n}$ is a non-decreasing
sequence of functions converging to $f$ at every point of $E$, that is,
both $\mu$-almost everywhere and $\hat\mu$-almost everywhere. So we
have, for any $c\in\Bbb R$,
$$\eqalign{\int fd\mu=c
&\iff\lim_{n\to\infty}\int f_nd\mu=c\cr
&\iff\lim_{n\to\infty}\int f_nd\hat\mu=c
\iff\int fd\hat\mu=c.\cr}$$
\medskip
\quad{\bf (iii)} As for infinite integrals, recall that for a non-negative
function I write `$\int f=\infty$' just when $f$ is defined almost
everywhere, is virtually measurable, and is not integrable. So (i) and
(ii) together show that $\int fd\mu=\int fd\hat\mu$ whenever $f$ is
non-negative and either integral is defined in $[0,\infty]$.
\medskip
\quad{\bf (iv)} Since both $\mu$, $\hat\mu$ agree that $\int f$ is to be
interpreted as $\int f^+-\int f^-$ just when this can be defined in
$[-\infty,\infty]$, writing $f^+(x)=\max(f(x),0)$,
$f^-(x)=\max(-f(x),0)$
for $x\in\dom f$, the result for general real-valued $f$ follows at
once.
}%end of proof of 212F
\leader{212G}{}\cmmnt{I turn now to the question of the effect of the
construction on the properties listed in
211B-211K. %211B 211C 211D 211E 211F 211G 211H 211I 211J 211K
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space, and
$(X,\hat\Sigma,\hat\mu)$ its completion.
(a) $(X,\hat\Sigma,\hat\mu)$ is a probability space, or totally finite,
or $\sigma$-finite, or semi-finite, or localizable, iff
$(X,\Sigma,\mu)$ is.
(b) $(X,\hat\Sigma,\hat\mu)$ is strictly localizable if $(X,\Sigma,\mu)$
is, and any decomposition of $X$ for $\mu$ is a decomposition for
$\hat\mu$.
(c) A set $H\in\hat\Sigma$ is an atom for $\hat\mu$ iff there is an
$E\in\Sigma$ such that $E$ is an atom for $\mu$ and $\hat\mu(H\symmdiff
E)=0$.
(d) $(X,\hat\Sigma,\hat\mu)$ is atomless or purely atomic iff
$(X,\Sigma,\mu)$ is.
\proof{{\bf (a)(i)} Because $\hat\mu X=\mu X$,
$(X,\hat\Sigma,\hat\mu)$ is a
probability space, or totally finite, iff $(X,\Sigma,\mu)$ is.
\medskip
\quad{\bf (ii)}\grheada\ If $(X,\Sigma,\mu)$ is $\sigma$-finite,
there is a sequence $\sequencen{E_n}$, covering $X$, with $\mu
E_n<\infty$
for each $n$. Now $\hat\mu E_n<\infty$ for each $n$, so
$(X,\hat\Sigma,\hat\mu)$ is $\sigma$-finite.
\medskip
\qquad\grheadb\ If $(X,\hat\Sigma,\hat\mu)$ is $\sigma$-finite,
there is a sequence $\sequencen{E_n}$, covering $X$, with
$\hat\mu E_n<\infty$ for each $n$. Now we can find, for each $n$, an
$E_n''\in\Sigma$ such that $\mu E_n''<\infty$ and $E_n\subseteq E_n''$;
so that $\sequencen{E_n''}$ witnesses that $(X,\Sigma,\mu)$ is
$\sigma$-finite.
\medskip
\quad{\bf (iii)}\grheada\ If $(X,\Sigma,\mu)$ is semi-finite and
$\hat\mu E=\infty$, then there is an $E'\in\Sigma$ such
that $E'\subseteq E$ and $\mu E'=\infty$. Next, there is an
$F\in\Sigma$
such that $F\subseteq E'$ and $0<\mu F<\infty$. Of course we now have
$F\in\hat\Sigma$, $F\subseteq E$ and $0<\hat\mu F<\infty$. As $E$ is
arbitrary, $(X,\hat\Sigma,\mu)$ is semi-finite.
\medskip
\qquad\grheadb\ If $(X,\hat\Sigma,\hat\mu)$ is semi-finite
and $\mu E=\infty$, then $\hat\mu E=\infty$, so there is an $F\subseteq
E$
such that $0<\hat\mu F<\infty$. Next, there is an $F'\in\Sigma$ such
that $F'\subseteq F$ and $\mu F'=\hat\mu F$. Of course we now have
$F'\subseteq E$ and $0<\mu F'<\infty$. As $E$ is arbitrary,
$(X,\Sigma,\mu)$ is semi-finite.
\medskip
\quad{\bf (iv)}\grheada\ If $(X,\Sigma,\mu)$ is localizable and
$\Cal E\subseteq \hat\Sigma$, then set
\Centerline{$\Cal F=\{F:F\in\Sigma,\,\exists\enskip
E\in\Cal E,\, F\subseteq E\}$.}
\noindent Let $H$ be an essential supremum of
$\Cal F$ in $\Sigma$, as in 211G.
If $E\in\Cal E$, there is an $E'\in\Sigma$ such that $E'\subseteq E$ and
$E\setminus E'$ is negligible; now $E'\in\Cal F$, so
\Centerline{$\hat\mu(E\setminus H)
\le\hat\mu(E\setminus E')+\mu(E'\setminus H)=0$.}
\noindent If $G\in\hat\Sigma$ and
$\hat\mu(E\setminus G)=0$ for every $E\in\Cal E$, let $G''\in\Sigma$ be
such that $G\subseteq G''$ and $\hat\mu(G''\setminus G)=0$; then, for
any $F\in\Cal F$, there is an
$E\in\Cal E$ including $F$, so that
\Centerline{$\mu(F\setminus G'')\le\hat\mu(E\setminus G)=0.$}
\noindent As $F$ is arbitrary, $\mu(H\setminus G'')=0$ and
$\hat\mu(H\setminus G)=0$. This shows that $H$ is an essential
supremum of $\Cal E$ in $\hat\Sigma$. As $\Cal E$ is arbitrary,
$(X,\hat\Sigma,\hat\mu)$ is localizable.
\medskip
\qquad\grheadb\ Suppose that $(X,\hat\Sigma,\hat\mu)$ is
localizable and that $\Cal E\subseteq\Sigma$. Working in
$(X,\hat\Sigma,\hat\mu)$, let $H$ be an essential supremum for $\Cal E$
in $\hat\Sigma$. Let $H'\in\Sigma$ be such that $H'\subseteq H$ and
$\hat\mu(H\setminus H')=0$. Then
\Centerline{$\mu(E\setminus H')
\le\hat\mu(E\setminus H)+\hat\mu(H\setminus H')=0$}
\noindent for every $E\in\Cal E$; while if $G\in\Sigma$ and
$\mu(E\setminus G)=0$ for every $E\in\Cal E$, we must have
\Centerline{$\mu(H'\setminus G)\le\hat\mu(H\setminus G)=0$.}
\noindent Thus $H'$ is an essential supremum of $\Cal E$ in $\Sigma$.
As $\Cal E$ is arbitrary, $(X,\Sigma,\mu)$ is localizable.
\medskip
{\bf (b)} Let $\langle X_i\rangle_{i\in I}$ be a decomposition of $X$
for $\mu$, as in 211E. Of course it is a partition of $X$ into
sets of finite $\hat\mu$-measure. If $H\subseteq X$ and
$H\cap X_i\in\hat\Sigma$ for every $i$, choose for each $i\in I$ sets $E_i'$, $E_i''\in\Sigma$ such that
\Centerline{$E_i'\subseteq H\cap X_i\subseteq E_i''$,\quad
$\mu(E_i''\setminus E_i')=0$.}
\noindent Set $E'=\bigcup_{i\in I}E_i'$,
$E''=\bigcup_{i\in I}(E_i''\cap X_i)$. Then $E'\cap X_i=E_i'$,
$E''\cap X_i=E_i''\cap X_i$ for
each $i$, so $E'$ and $E''$ belong to $\Sigma$. Also
\Centerline{$\mu(E''\setminus E')
=\sum_{i\in I}\mu(E_i''\cap X_i\setminus E_i')=0$.}
\noindent As $E'\subseteq H\subseteq E''$, $H\in\hat\Sigma$ and
\Centerline{$\hat\mu H=\mu E'
=\sum_{i\in I}\mu E'_i=\sum_{i\in I}\hat\mu(H\cap X_i)$.}
\noindent As $H$ is arbitrary, $\langle X_i\rangle_{i\in I}$
is a decomposition of $X$ for $\hat\mu$.
Accordingly, $(X,\hat\Sigma,\hat\mu)$ is strictly localizable if such a
decomposition exists, which is so if $(X,\Sigma,\mu)$ is strictly
localizable.
\medskip
{\bf (c)-(d)(i)} Suppose that $E\in\hat\Sigma$ is an atom for $\hat\mu$.
Let $E'\in\Sigma$ be such that $E'\subseteq E$ and
$\hat\mu(E\setminus E')=0$. Then $\mu E'=\hat\mu E>0$. If $F\in\Sigma$ and $F\subseteq E'$, then $F\subseteq E$, so either
$\mu F=\hat\mu F=0$ or $\mu(E'\setminus F)=\hat\mu(E\setminus F)=0$. As
$F$ is arbitrary, $E'$ is an atom for $\mu$, and
$\hat\mu(E\symmdiff E')=\hat\mu(E\setminus E')=0$.
\medskip
\quad{\bf (ii)} Suppose that $E\in\Sigma$ is an atom for $\mu$, and that
$H\in\hat\Sigma$ is such that $\hat\mu(H\symmdiff E)=0$. Then
$\hat\mu H=\mu E>0$. If $F\in\hat\Sigma$ and $F\subseteq H$, let
$F'\subseteq F$ be such that $F'\in\Sigma$ and
$\hat\mu(F\setminus F')=0$. Then
$E\cap F'\subseteq E$ and $\hat\mu(F\symmdiff(E\cap F'))=0$, so either
$\hat\mu F=\mu(E\cap F')=0$ or
$\hat\mu(H\setminus F)=\mu(E\setminus F')=0$. As $F$ is arbitrary, $H$
is an atom for $\hat\mu$.
\medskip
\quad{\bf (iii)} It follows at once that $(X,\hat\Sigma,\hat\mu)$ is
atomless iff $(X,\Sigma,\mu)$ is.
\medskip
\quad{\bf (iv)}\grheada\ On the other hand, if $(X,\Sigma,\mu)$
is purely atomic and $\hat\mu H>0$, there is an $E\in\Sigma$ such that
$E\subseteq H$ and $\mu E>0$, and an atom $F$ for $\mu$ such that
$F\subseteq E$; but $F$ is also an atom for $\hat\mu$. As $H$ is
arbitrary, $(X,\hat\Sigma,\hat\mu)$ is purely atomic.
\medskip
\qquad\grheadb\ And if $(X,\hat\Sigma,\hat\mu)$ is purely
atomic and $\mu E>0$, then there is an $H\subseteq E$ which is an atom
for
$\hat\mu$; now let $F\in\Sigma$ be such that $F\subseteq H$ and
$\hat\mu(H\setminus F)=0$, so that $F$ is an atom for $\mu$ and
$F\subseteq E$. As $E$ is arbitary, $(X,\Sigma,\mu)$ is purely atomic.
}%end of proof of 212G
\exercises{
\leader{212X}{Basic exercises $\pmb{>}$(a)}
%\spheader 212Xa
Let $(X,\Sigma,\mu)$ be a
complete measure space. Suppose that $A\subseteq E\in\Sigma$ and that
$\mu^*A+\mu^*(E\setminus A)=\mu E<\infty$. Show that $A\in\Sigma$.
\sqheader 212Xb Let $\mu$ and $\nu$ be two measures on a set $X$, with
completions $\hat\mu$ and $\hat\nu$. Show that the following are
equiveridical: (i) the outer measures $\mu^*$, $\nu^*$ defined from $\mu$
and $\nu$ coincide; (ii) $\hat\mu E=\hat\nu E$ whenever either is
defined and finite; (iii) $\int fd\mu=\int fd\nu$ whenever $f$ is a
real-valued function such that either integral is defined and finite.
\Hint{for (i)$\Rightarrow$(ii), if $\hat\mu E<\infty$, take a measurable
envelope $F$ of $E$ for $\nu$ and calculate
$\nu^*E+\nu^*(F\setminus E)$.}
\spheader 212Xc Let $\mu$ be the restriction of Lebesgue measure
to the Borel $\sigma$-algebra of $\Bbb R$, as in 211P. Show that its
completion is Lebesgue measure itself. \Hint{134F.}
\spheader 212Xd Repeat 212Xc for (i) Lebesgue measure on
$\BbbR^r$ (ii) Lebesgue-Stieltjes measures on $\Bbb R$ (114Xa).
\spheader 212Xe
Let $X$ be a set and $\Sigma$ a $\sigma$-algebra
of subsets of $X$. Let $\Cal I$ be a $\sigma$-ideal of subsets of $X$
(112Db).
(i) Show that $\Sigma_1=\{E\symmdiff A:E\in\Sigma,\,A\in\Cal I\}$ is a
$\sigma$-algebra of subsets of $X$.
(ii) Let $\Sigma_2$ be the family of sets $E\subseteq X$ such
that there are $E'$, $E''\in\Sigma$ with $E'\subseteq E\subseteq E''$
and $E''\setminus E'\in\Cal I$. Show that $\Sigma_2$ is a
$\sigma$-algebra of subsets of $X$ and that $\Sigma_2\subseteq\Sigma_1$.
(iii) Show that $\Sigma_2=\Sigma_1$ iff every member of
$\Cal I$ is included in a member of $\Sigma\cap\Cal I$.
\spheader 212Xf
Let $(X,\Sigma,\mu)$ be a measure space, $Y$ any set and
$\phi:X\to Y$ a function. Set $\theta B=\mu^*\phi^{-1}[B]$ for every
$B\subseteq Y$. (i) Show that $\theta$ is an outer measure on $Y$.
(ii) Let $\nu$ be the measure defined from $\theta$ by \Caratheodory's
method, and $\Tau$ its domain. Show that if $C\subseteq Y$ and
$\phi^{-1}[C]\in\Sigma$ then $C\in\Tau$. (iii) Suppose that
$(X,\Sigma,\mu)$ is complete
and totally finite. Show that $\nu$ is the image measure
$\mu\phi^{-1}$.
\spheader 212Xg
Let $g$, $h$ be two non-decreasing functions from
$\Bbb R$ to itself, and $\mu_g$, $\mu_h$ the associated
Lebesgue-Stieltjes
measures. Show that a real-valued function $f$ defined on a subset of
$\Bbb R$ is $\mu_{g+h}$-integrable iff it is both
$\mu_g$-integrable and $\mu_h$-integrable, and that then
$\int fd\mu_{g+h}=\int fd\mu_g+\int fd\mu_h$. \Hint{114Yb}.
\spheader 212Xh Let $(X,\Sigma,\mu)$ be a measure
space, and $\Cal I$ a
$\sigma$-ideal of subsets of $X$; set
$\Sigma_1=\{E\symmdiff A:E\in\Sigma,\,A\in\Cal I\}$, as in 212Xe.
Show that if every member of $\Sigma\cap\Cal I$
is $\mu$-negligible, then there is a unique extension of $\mu$ to a
measure $\mu_1$ with domain $\Sigma_1$ such that $\mu_1A=0$ for every
$A\in\Cal I$.
%212C
\spheader 212Xi\dvAnew{2009}
Let $(X,\Sigma,\mu)$ be a complete measure space such that
$\mu X>0$, $Y$ a set, $f:X\to Y$ a function and $\mu f^{-1}$ the image
measure on $Y$. Show that if $\Cal F$ is the filter of
$\mu$-conegligible subsets of $X$, then the image filter $f[[\Cal F]]$
(2A1Ib) is the filter of $\mu f^{-1}$-conegligible subsets of $Y$.
\spheader 212Xj\dvAnew{2010}
Let $(X,\Sigma,\mu)$ be a complete measure space and $f:X\to\Bbb R$ a
function such that $\overline{\int}fd\mu<\infty$. Show that there is a
measurable function $g:X\to\Bbb R$ such that $f(x)\le g(x)$ for every
$x\in X$ and $\int g\,d\mu=\overline{\int}fd\mu$.
\leader{212Y}{Further exercises (a)}
%\spheader 212Ya
Let $X$ be a set and $\phi$ an inner measure on $X$,
that is, a functional from $\Cal PX$ to $[0,\infty]$ such that
\inset{$\phi\emptyset=0$,}
\inset{$\phi(A\cup B)\ge\phi A+\phi B$ if $A\cap B=\emptyset$,}
\inset{$\phi(\bigcap_{n\in\Bbb N}A_n)=\lim_{n\to\infty}\phi A_n$
whenever $\sequencen{A_n}$ is a non-increasing sequence of subsets of
$X$ and $\phi A_0<\infty$,}
\inset{if $\phi A=\infty$, $a\in\Bbb R$ there is a $B\subseteq A$ such
that $a\le\phi B<\infty$.}
\noindent Let $\mu$ be the measure defined from $\phi$, that is,
$\mu=\phi\restr\Sigma$, where
\Centerline{$\Sigma=\{E:\phi(A)
=\phi(A\cap E)+\phi(A\setminus E)\Forall A\subseteq X\}$}
\noindent (113Yg). Show that $\mu$ must be complete.
}%end of exercises
\endnotes{
\Notesheader{212} The process of completion is so natural, and so
universally applicable,
and so convenient, that over large parts of measure theory it is
reasonable to use only complete measure spaces. Indeed many authors so
phrase their definitions that, explicitly or implicitly, only complete
measure spaces are considered. In this treatise I avoid taking quite
such a large step, even though it would simplify the statements of many
of the theorems in this volume (for instance). I did take the trouble, in Volume 1, to give a definition of `integrable function' which, in effect, looks at integrability with respect to the
completion of a measure (212Fb). There are non-complete
measure spaces which are worthy of study (for example, the restriction
of Lebesgue measure to the Borel $\sigma$-algebra of $\Bbb R$ -- see
211P), and some
interesting questions to be dealt with in Volumes 3 and 5 apply to
them. At the cost of rather a lot of verbal manoeuvres, therefore, I
prefer to write theorems out in a form in which they can be applied to
arbitrary measure spaces, without assuming completeness. But it would
be reasonable, and indeed would sharpen your technique, if you regularly
sought the alternative formulations which become natural if you are
interested only in complete spaces.
}
\discrpage