forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt213.tex
1288 lines (984 loc) · 48.1 KB
/
mt213.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt213.tex}
\versiondate{13.9.13}
\copyrightdate{2000}
\def\chaptername{Taxonomy of measure spaces}
\def\sectionname{Semi-finite, locally determined and localizable spaces}
\newsection{213}
In this section I collect a variety of useful facts concerning these
types of measure space. I start with the characteristic properties of
semi-finite spaces (213A-213B), and continue with complete locally
determined spaces (213C) and the concept of
`c.l.d.\ version' (213D-213H),
%213D 213E 213F 213G 213H
the most powerful of the universally
available methods of modifying a measure space into a better-behaved
one. I briefly discuss `locally determined negligible sets'
(213I-213L),
%213I 213J 213K 213L
and measurable envelopes (213L-213M),
and end with results on localizable spaces (213N) and strictly
localizable spaces (213O).
\leader{213A}{Lemma} Let $(X,\Sigma,\mu)$ be a semi-finite measure
space. Then
\Centerline{$\mu E
=\sup\{\mu F:F\in\Sigma,\,F\subseteq E,\,\mu F<\infty\}$}
\noindent for every $E\in\Sigma$.
\proof{ Set
$c=\sup\{\mu F:F\in\Sigma,\,F\subseteq E,\,\mu F<\infty\}$. Then
surely $c\le\mu E$, so if
$c=\infty$ we can stop. If $c<\infty$, let $\sequencen{F_n}$
be a sequence of measurable subsets of $E$, of finite measure, such that
$\lim_{n\to\infty}\mu F_n=c$; set $F=\bigcup_{n\in\Bbb N}F_n$.
For each $n\in\Bbb N$, $\bigcup_{k\le n}F_k$ is a measurable set of
finite measure included in $E$, so $\mu(\bigcup_{k\le n}F_k)\le c$,
and
\Centerline{$\mu F=\lim_{n\to\infty}\mu(\bigcup_{k\le n}F_k)\le c$.}
\noindent Also
\Centerline{$\mu F\ge\sup_{n\in\Bbb N}\mu F_n\ge c$,}
\noindent so $\mu F=c$.
If $F'$ is a measurable subset of $E\setminus F$ and $\mu F'<\infty$,
then $F\cup F'$ has finite measure and is included in $E$, so has
measure at most $c=\mu F$; it follows that $\mu F'=0$. But this
means that $\mu(E\setminus F)$ cannot be infinite, since then, because
$(X,\Sigma,\mu)$ is semi-finite, it would have to include a measurable
set of non-zero finite measure. So $E\setminus F$ has finite measure,
and is therefore in fact negligible; and $\mu E=c$, as claimed.
}%end of proof of 213A
\vleader{72pt}{213B}{Proposition} Let $(X,\Sigma,\mu)$ be a semi-finite measure
space. Let $f$ be a $\mu$-virtually measurable $[0,\infty]$-valued
function defined almost everywhere in $X$. Then
$$\eqalign{\int f
&=\sup\{\int g:g\text{ is a simple function},\,g\leae f\}\cr
&=\sup_{F\in\Sigma,\mu F<\infty}\int_Ff}$$
\noindent in $[0,\infty]$.
\proof{{\bf (a)} For any measure space $(X,\Sigma,\mu)$, a
$[0,\infty]$-valued function defined on a subset of $X$ is
integrable iff there is a conegligible set $E$ such that
\inset{($\alpha$) $E\subseteq\dom f$ and $f\restr E$ is measurable,}
\inset{($\beta$)
$\sup\{\int g:g$ is a simple function, $g\leae f\}$ is finite,}
\inset{($\gamma$) for every $\epsilon>0$,
$\{x:x\in E,\,f(x)\ge\epsilon\}$ has finite measure,}
\inset{($\delta$) $f$ is finite almost everywhere}
\noindent (see 122Ja, 133B). But if $\mu$ is semi-finite, ($\gamma$)
and ($\delta$) are consequences of the rest. \Prf\ Let $\epsilon>0$.
Set
\Centerline{$E_{\epsilon}=\{x:x\in E,\,f(x)\ge\epsilon\}$,}
\Centerline{$c
=\sup\{\int g:g$ is a simple function, $g\leae f\}$;}
\noindent we are supposing that $c$ is finite. If
$F\subseteq E_{\epsilon}$ is measurable and $\mu F<\infty$, then
$\epsilon\chi F$ is a
simple function and $\epsilon\chi F\leae f$, so
\Centerline{$\epsilon\mu F=\int\epsilon\chi F\le c$,
\quad$\mu F\le\Bover{c}{\epsilon}$.}
\noindent As $F$ is arbitrary, 213A tells us that
$\mu E_{\epsilon}\le\bover{c}{\epsilon}$ is finite. As $\epsilon$ is
arbitrary, ($\gamma$) is satisfied.
As for ($\delta$), if $F=\{x:x\in E,\,f(x)=\infty\}$ then $\mu F$ is
finite (by ($\gamma$)) and $n\chi F\leae f$, so $n\mu F\le c$, for
every $n\in\Bbb N$, so $\mu F=0$.\ \Qed
\medskip
{\bf (b)} Now suppose that $f:D\to[0,\infty]$ is a $\mu$-virtually
measurable function, where $D\subseteq X$ is conegligible, so that
$\int f$ is defined in $[0,\infty]$ (135F). Then (a) tells us that
\leaveitout{$$\eqalignno{\int f
&=\sup_{g\text{ is simple},g\le f\text{ a.e.}}\int g\cr
\displaycause{if either is finite, and therefore also if either is
infinite}
&=\sup_{g\text{ is simple},g\le f\text{ a.e.},\mu F<\infty}\int_Fg
\le\sup_{\mu F<\infty}\int_Ff
\le\int f,\cr}$$}
$$\eqalignno{\int f
&=\sup_{\Atop{g\text{ is simple}}{g\le f\text{ a.e.}}}\int g\cr
\displaycause{if either is finite, and therefore also if either is
infinite}
&=\sup_{\Atop{g\text{ is simple}}{\Atop{g\le f\text{ a.e.}}
{\mu F<\infty}}}\int_Fg
\le\sup_{\mu F<\infty}\int_Ff
\le\int f,\cr}$$
\noindent so we have the equalities we seek.
}%end of proof of 213B
\leader{*213C}{Proposition} Let $(X,\Sigma,\mu)$ be a complete
locally determined measure space, and $\mu^*$ the outer measure derived
from $\mu$\cmmnt{ (132A-132B)}. Then the measure defined from
$\mu^*$ by \Caratheodory's method is $\mu$ itself.
\proof{ Write $\check\mu$ for the measure defined by \Caratheodory's
method from $\mu^*$, and $\check\Sigma$ for its domain.
\medskip
{\bf (a)} If $E\in\Sigma$ and $A\subseteq X$ then
$\mu^*(A\cap E)+\mu^*(A\setminus E)=\mu^*A$ (132Af), so
$E\in\check\Sigma$. Now
$\check\mu E=\mu^*E=\mu E$ (132Ac). Thus $\Sigma\subseteq\check\Sigma$
and $\mu=\check\mu\restr\Sigma$.
\medskip
{\bf (b)} Now suppose that $H\in\check\Sigma$. Let $E\in\Sigma$ be
such that $\mu E<\infty$. Then $H\cap E\in\Sigma$. \Prf\ Let $E_1$,
$E_2\in\Sigma$ be measurable envelopes of $E\cap H$, $E\setminus H$
respectively, both included in $E$ (132Ee). Because $H\in\check\Sigma$,
\Centerline{$\mu E_1+\mu E_2=\mu^*(E\cap H)+\mu^*(E\setminus H)
=\mu^*E=\mu E$.}
\noindent As $E_1\cup E_2=E$,
\Centerline{$\mu(E_1\cap E_2)=\mu E_1+\mu E_2-\mu E=0$.}
\noindent Now $E_1\setminus(E\cap H)\subseteq E_1\cap E_2$; because
$\mu$ is complete, $E_1\setminus(E\cap H)$ and $E\cap H$ belong to
$\Sigma$.\ \Qed
As $E$ is arbitrary, and $\mu$ is locally determined, $H\in\Sigma$. As
$H$ is arbitrary, $\check\Sigma=\Sigma$ and $\check\mu=\mu$.
}%end of proof of 213C
\leader{213D}{C.l.d.\ versions: Proposition} Let $(X,\Sigma,\mu)$ be a
measure space. Write $(X,\hat\Sigma,\hat\mu)$ for its
completion\cmmnt{ (212C)} and $\Sigma^f$ for
$\{E:E\in\Sigma,\,\mu E<\infty\}$. Set
\Centerline{$\tilde\Sigma=\{H:H\subseteq X,\,H\cap E\in\hat\Sigma$ for
every $E\in\Sigma^f\}$,}
\noindent and for $H\in\tilde\Sigma$ set
\Centerline{$\tilde\mu H=\sup\{\hat\mu(H\cap E):E\in\Sigma^f\}$.}
\noindent Then
$(X,\tilde\Sigma,\tilde\mu)$ is a complete locally determined
measure space.
\proof{{\bf (a)} I check first that $\tilde\Sigma$ is a
$\sigma$-algebra. \Prf\ {(i)} $\emptyset\cap E=\emptyset\in\hat\Sigma$
for every $E\in\Sigma^f$, so $\emptyset\in\tilde\Sigma$. {(ii)} If
$H\in\tilde\Sigma$ then
\Centerline{$(X\setminus H)\cap E
=E\setminus(E\cap H)\in\hat\Sigma$}
\noindent for every $E\in\Sigma^f$, so $X\setminus H\in\tilde\Sigma$.
{(iii)} If $\sequencen{H_n}$ is a sequence in $\tilde\Sigma$ with union
$H$, then
\Centerline{$H\cap E=\bigcup_{n\in\Bbb N}H_n\cap E\in\hat\Sigma$}
\noindent for every
$E\in\Sigma^f$, so $H\in\tilde\Sigma$.\ \Qed
\medskip
{\bf (b)} It is obvious that $\tilde\mu \emptyset=0$. If
$\sequencen{H_n}$ is a disjoint sequence in $\tilde\Sigma$ with union
$H$, then
$$\eqalign{\tilde\mu H
&=\sup\{\hat\mu(H\cap E):E\in\Sigma^f\}\cr
&=\sup\{\sum_{n=0}^{\infty}\hat\mu(H_n\cap E):E\in\Sigma^f\}
\le\sum_{n=0}^{\infty}\tilde\mu H_n.\cr}$$
\noindent On the other hand, given $a<\sum_{n=0}^{\infty}\tilde\mu H_n$,
there is an $m\in\Bbb N$ such that $a<\sum_{n=0}^m\tilde\mu H_n$; now
we can find $E_0,\ldots,E_m\in\Sigma^f$ such that
$a\le\sum_{n=0}^m\hat\mu(H_n\cap E_n)$. Set $E=\bigcup_{n\le
m}E_n\in\Sigma^f$; then
\Centerline{$\tilde\mu H\ge\hat\mu(H\cap E)
=\sum_{n=0}^{\infty}\hat\mu(H_n\cap E)
\ge\sum_{n=0}^m\hat\mu(H_n\cap E_n)
\ge a$.}
\noindent As $a$ is arbitrary, $\tilde\mu
H\ge\sum_{n=0}^{\infty}\tilde\mu H_n$ and $\tilde\mu
H=\sum_{n=0}^{\infty}\tilde\mu H_n$.
\medskip
{\bf (c)} Thus $(X,\tilde\Sigma,\tilde\mu)$ is a measure space. To
see that it is semi-finite, note first that
$\hat\Sigma\subseteq\tilde\Sigma$ (because if $H\in\hat\Sigma$ then
surely $H\cap E\in\hat\Sigma$ for every $E\in\Sigma^f$), and that
$\tilde\mu H=\hat\mu H$ whenever $\hat\mu H<\infty$ (because then, by
the definition in 212Ca, there is an $E\in\Sigma^f$ such that
$H\subseteq E$, so that
$\tilde\mu H=\hat\mu(H\cap E)=\hat\mu H$). Now suppose that
$H\in\tilde\Sigma$ and that $\tilde\mu H=\infty$. There is surely an
$E\in\Sigma^f$ such that $\hat\mu(H\cap E)>0$; but now $0<\hat\mu(H\cap
E)<\infty$, so $0<\tilde\mu(H\cap E)<\infty$.
\medskip
{\bf (d)} Thus $(X,\tilde\Sigma,\tilde\mu)$ is a semi-finite measure space.
To see that it is locally determined, let $H\subseteq X$ be such that
$H\cap G\in\tilde\Sigma$ whenever $G\in\tilde\Sigma$ and
$\tilde\mu G<\infty$. Then, in particular, we must have
$H\cap E\in\tilde\Sigma$
for every $E\in\Sigma^f$. But this means in fact that
$H\cap E\in\hat\Sigma$ for every $E\in\Sigma^f$, so that
$H\in\tilde\Sigma$.
As $H$ is arbitrary, $(X,\Sigma,\mu)$ is locally determined.
\medskip
{\bf (e)} To see that $(X,\tilde\Sigma,\tilde\mu)$ is complete,
suppose that $A\subseteq H\in\tilde\Sigma$ and that $\tilde\mu H=0$.
Then for every $E\in\Sigma^f$ we must have $\hat\mu(H\cap E)=0$.
Because $(X,\hat\Sigma,\hat\mu)$ is complete, and
$A\cap E\subseteq H\cap E$, $A\cap E\in\hat\Sigma$. As $E$ is
arbitrary, $A\in\tilde\Sigma$.
}%end of proof of 213D
\leader{213E}{Definition} For any measure space $(X,\Sigma,\mu)$, I will
call $(X,\tilde\Sigma,\tilde\mu)$, as constructed in 213D, the
{\bf c.l.d.\ version} (`complete locally determined version') of $(X,\Sigma,\mu)$; and $\tilde\mu$ will be the
{\bf c.l.d.\ version} of $\mu$.
\leader{213F}{}\cmmnt{ Following the same pattern as in
212E-212G, %212E 212F 212G
I start with some elementary remarks to facilitate manipulation of this
construction.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be any measure space
and $(X,\tilde\Sigma,\tilde\mu)$ its c.l.d.\ version.
(a) $\Sigma\subseteq\tilde\Sigma$ and $\tilde\mu E=\mu E$ whenever
$E\in\Sigma$ and $\mu E<\infty$ -- in fact, if $(X,\hat\Sigma,\hat\mu)$
is the completion of $(X,\Sigma,\mu)$, $\hat\Sigma\subseteq\tilde\Sigma$
and $\tilde\mu E=\hat\mu E$ whenever $\hat\mu E<\infty$.
(b) Writing $\tilde\mu^*$ and $\mu^*$ for the outer measures defined
from $\tilde\mu$ and $\mu$ respectively, $\tilde\mu^*A\le\mu^*A$ for
every $A\subseteq X$, with equality if
$\mu^*A$ is finite. In particular, $\mu$-negligible sets are
$\tilde\mu$-negligible; consequently, $\mu$-conegligible sets are
$\tilde\mu$-conegligible.
(c) If $H\in\tilde\Sigma$,
\quad (i) $\tilde\mu H=\sup\{\mu F:E\in\Sigma$, $\mu F<\infty$,
$F\subseteq H\}$;
\quad (ii) there is an $E\in\Sigma$ such that
$E\subseteq H$ and $\mu E=\tilde\mu H$, so that
if $\tilde\mu H<\infty$ then $\tilde\mu(H\setminus E)=0$.
\proof{{\bf (a)} This is already covered by remarks in the proof of
213D.
\medskip
{\bf (b)} If $\mu^*A=\infty$ then surely $\tilde\mu^*A\le\mu^*A$. If
$\mu^*A<\infty$, take $E\in\Sigma$ such that $A\subseteq E$ and
$\mu E=\mu^*A$ (132Aa). Then
\Centerline{$\tilde\mu^*A\le\tilde\mu E=\mu E=\mu^*A$.}
\noindent On the other hand, if $A\subseteq H\in\tilde\Sigma$, then
\Centerline{$\tilde\mu H\ge\hat\mu(H\cap E)\ge\hat\mu^*A=\mu^*A$,}
\noindent using 212Ea. So $\mu^*A\le\tilde\mu^*A$ and
$\mu^*A=\tilde\mu^*A$.
\medskip
{\bf (c)} Write $\Sigma^f$ for $\{E:E\in\Sigma,\,\mu E<\infty\}$; then,
by the definition in 213D,
$\tilde\mu H=\sup\{\hat\mu(H\cap E):E\in\Sigma^f\}$. Let
$\sequencen{E_n}$ be a sequence in $\Sigma^f$
such that $\tilde\mu H=\sup_{n\in\Bbb N}\hat\mu(H\cap E_n)$. For each
$n\in\Bbb N$ there is an $F_n\in\Sigma$ such that
$F_n\subseteq H\cap E_n$ and
$\mu F_n=\hat\mu(H\cap E_n)$ (212C). Set $E=\bigcup_{n\in\Bbb N}F_n$.
Then $E\in\Sigma$, $E\subseteq H$ and
\Centerline{$\tilde\mu H
=\sup_{n\in\Bbb N}\mu F_n
\le\lim_{n\to\infty}\mu(\bigcup_{i\le n}F_i)
=\mu E
=\lim_{n\to\infty}\tilde\mu(\bigcup_{i\le n}F_i)
\le\tilde\mu H,$}
\noindent so $\mu E=\tilde\mu H$, and if $\tilde\mu H<\infty$ then
$\tilde\mu(H\setminus E)=0$. At the same time,
$$\eqalignno{\tilde\mu H
&=\sup_{n\in\Bbb N}\mu F_n
\le\sup_{F\in\Sigma^f,F\subseteq H}\mu F
=\sup_{F\in\Sigma^f,F\subseteq H}\tilde\mu F\cr
\displaycause{by (a) again}
&\le\tilde\mu H,\cr}$$
\noindent so we have equality here too.
}%end of proof of 213F
\leader{213G}{}\cmmnt{ The next step is to look at functions which are
measurable or integrable with respect to $\tilde\mu$.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space, and
$(X,\tilde\Sigma,\tilde\mu)$ its c.l.d.\ version.
(a) If a real-valued function $f$ defined on a subset of $X$ is
$\mu$-virtually measurable, it is $\tilde\Sigma$-measurable.
%should we have $[-\infty,\infty]$-valued here?
(b) If a real-valued function is $\mu$-integrable, it is
$\tilde\mu$-integrable with the same integral.
(c) If $f$ is a $\tilde\mu$-integrable real-valued function, there is a
$\mu$-integrable real-valued function which is equal to
$f\,\,\tilde\mu$-almost everywhere.
\proof{ Write $\Sigma^f$ for $\{E:E\in\Sigma,\,\mu E<\infty\}$. By
213Fa, $\tilde\mu$ and $\mu$ agree on $\Sigma^f$.
\medskip
{\bf (a)} By 212Fa, $f$ is $\hat\Sigma$-measurable, where
$\hat\Sigma$ is the domain of the completion of $\mu$; but since
$\hat\Sigma\subseteq\tilde\Sigma$, $f$ is $\tilde\Sigma$-measurable.
\medskip
{\bf (b)(i)} If $f$ is a $\mu$-simple function it is
$\tilde\mu$-simple,
and $\int fd\mu=\int fd\tilde\mu$, because $\tilde\mu E=\mu E$ for every
$E\in\Sigma^f$.
\medskip
\quad{\bf (ii)} If $f$ is a non-negative $\mu$-integrable function,
there is a non-decreasing sequence $\sequencen{f_n}$ of $\mu$-simple
functions converging to $f\,\,\mu$-almost everywhere; now (by 213Fb)
$\mu$-negligible sets are $\tilde\mu$-negligible, so $\sequencen{f_n}$
converges to $f\,\,\tilde\mu$-a.e.\ and (by B.Levi's theorem, 123A) $f$
is $\tilde\mu$-integrable, with
\Centerline{$\int fd\tilde\mu=\lim_{n\to\infty}\int f_nd\tilde\mu
=\lim_{n\to\infty}\int f_nd\mu=\int fd\mu$.}
\medskip
\quad{\bf (iii)} In general, if $\int fd\mu$ is defined in
$\Bbb R$, we have
\Centerline{$\int fd\tilde\mu
=\int f^+d\tilde\mu-\int f^-d\tilde\mu
=\int f^+d\mu-\int f^-d\mu=\int fd\mu$,}
\noindent writing $f^+$ for $f\vee 0$ and $f^-$ for $(-f)\vee 0$.
\medskip
{\bf (c)(i)} Let $f$ be a $\tilde\mu$-simple function. Express it as
$\sum_{i=0}^na_i\chi H_i$ where $\tilde\mu H_i<\infty$ for each $i$.
Choose $E_0,\ldots,E_n\in\Sigma$ such that $E_i\subseteq H_i$ and
$\tilde\mu(H_i\setminus E_i)=0$ for each $i$ (using 213Fc above). Then
$g=\sum_{i=0}^na_i\chi E_i$ is $\mu$-simple,
$g=f\,\,\tilde\mu$-a.e., and $\int g\,d\mu=\int fd\tilde\mu$.
\medskip
\quad{\bf (ii)} Let $f$ be a non-negative $\tilde\mu$-integrable
function. Let $\sequencen{f_n}$ be a non-decreasing sequence of
$\tilde\mu$-simple functions converging $\tilde\mu$-almost everywhere to
$f$. For each $n$, choose a $\mu$-simple function $g_n$ equal
$\tilde\mu$-almost everywhere to $f_n$. Then $\{x:g_{n+1}(x)<g_n(x)\}$
belongs to $\Sigma^f$ and is $\tilde\mu$-negligible, therefore
$\mu$-negligible. So $\sequencen{g_n}$ is non-decreasing $\mu$-almost
everywhere. Because
\Centerline{$\lim_{n\to\infty}\int g_nd\mu
=\lim_{n\to\infty}\int f_nd\tilde\mu=\int fd\tilde\mu$,}
\noindent B.Levi's theorem tells us that $\sequencen{g_n}$ converges
$\mu$-almost everywhere to a $\mu$-integrable function $g$; because
$\mu$-negligible sets are $\tilde\mu$-negligible,
$$\eqalign{(X\setminus\dom f)
&\cup(X\setminus\dom g)\cr
&\cup\bigcup_{n\in\Bbb N}\{x:f_n(x)\ne g_n(x)\}\cr
&\cup\{x:x\in\dom
f,\,f(x)\ne\sup_{n\in\Bbb N}f_n(x)\}\cr
&\cup\{x:x\in\dom
g,\,g(x)\ne\sup_{n\in\Bbb N}g_n(x)\}\cr}$$
\noindent is $\tilde\mu$-negligible, and $f=g\,\,\tilde\mu$-a.e.
\medskip
\quad{\bf (iii)} If $f$ is $\tilde\mu$-integrable, express it as
$f_1-f_2$ where $f_1$ and $f_2$ are $\tilde\mu$-integrable and
non-negative; then there
are $\mu$-integrable functions $g_1$, $g_2$ such that $f_1=g_1$,
$f_2=g_2\,\,\tilde\mu$-a.e., so that $g=g_1-g_2$ is $\mu$-integrable and
equal to $f\,\,\tilde\mu$-a.e.
}%end of proof of 213G
\leader{213H}{}\cmmnt{ Thirdly, I turn to the effect of the
construction here on the other properties being considered in this
chapter.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space,
$(X,\hat\Sigma,\hat\mu)$ its completion and $(X,\tilde\Sigma,\tilde\mu)$
its c.l.d.\ version.
(a) If $(X,\Sigma,\mu)$ is a probability space, or totally finite, or
$\sigma$-finite, or strictly localizable, so is
$(X,\tilde\Sigma,\tilde\mu)$, and in all these cases
$\tilde\mu=\hat\mu$;
(b) if $(X,\Sigma,\mu)$ is localizable, so is
$(X,\tilde\Sigma,\tilde\mu)$, and for every $H\in\tilde\Sigma$ there is
an $E\in\Sigma$ such that $\tilde\mu(E\symmdiff H)=0$;
(c) $(X,\Sigma,\mu)$ is semi-finite iff $\tilde\mu F=\mu F$ for every
$F\in\Sigma$, and in this case $\int fd\tilde\mu=\int fd\mu$ whenever
the latter is defined in $[-\infty,\infty]$;
(d) a set $H\in\tilde\Sigma$ is an atom for $\tilde\mu$ iff there is an
atom $E$ for $\mu$ such that $\mu E<\infty$ and
$\tilde\mu(H\symmdiff E)=0$;
(e) if $(X,\Sigma,\mu)$ is atomless or purely atomic, so is
$(X,\tilde\Sigma,\tilde\mu)$;
(f) $(X,\Sigma,\mu)$ is complete and locally determined iff
$\tilde\mu=\mu$.
\proof{{\bf (a)(i)} I start by showing that if $(X,\Sigma,\mu)$ is
strictly localizable, then
$\tilde\mu=\hat\mu$. \Prf\ Let $\langle X_i\rangle_{i\in I}$ be a
decomposition of $X$ for $\mu$; then it is also a decomposition for
$\hat\mu$ (212Gb). If $H\in\tilde\Sigma$, we shall have
$H\cap X_i\in\hat\Sigma$ for every $i$, and therefore $H\in\hat\Sigma$;
moreover,
$$\eqalign{\hat\mu H
&=\sum_{i\in I}\hat\mu(H\cap X_i)
=\sup\{\sum_{i\in J}\hat\mu(H\cap X_i):J\subseteq I
\text{ is finite}\}\cr
&\le\sup\{\hat\mu(H\cap E):E\in\Sigma,\,\mu E<\infty\}
=\tilde\mu H
\le\hat\mu H.\cr}$$
\noindent So $\hat\mu H=\tilde\mu H$ for every $H\in\tilde\Sigma$ and
$\hat\mu=\tilde\mu$.\ \Qed
\medskip
\quad{\bf (ii)} Consequently, if $(X,\Sigma,\mu)$ is a probability
space, or totally
finite, or $\sigma$-finite, or strictly localizable, so is
$(X,\tilde\Sigma,\tilde\mu)$, using 212Ga-212Gb to see that
$(X,\hat\Sigma,\hat\mu)$ has the property involved.
\medskip
{\bf (b)} If $(X,\Sigma,\mu)$ is localizable, let $\Cal H$ be any subset
of $\tilde\Sigma$. Set
\Centerline{$\Cal E=\{E:E\in\Sigma^f,\,\exists\enskip
H\in\Cal H,\,E\subseteq H\}$}
\noindent where $\Sigma^f=\{E:\mu E<\infty\}$ as usual.
Working in $(X,\Sigma,\mu)$, let $F\in\Sigma$ be an essential
supremum for $\Cal E$.
\medskip
\quad{\bf (i)} \Quer\ Suppose, if possible, that there is an
$H\in\Cal H$ such that $\tilde\mu(H\setminus F)>0$. By 213F(c-i),
there is an
$E\in\Sigma^f$ such that $E\subseteq H\setminus F$ and $\mu E>0$.
This $E$ belongs to $\Cal E$
and $\mu(E\setminus F)=\mu E>0$; which is impossible if $F$ is an
essential supremum of $\Cal E$.\ \Bang
\medskip
\quad{\bf (ii)} Thus $\tilde\mu(H\setminus F)=0$ for every $H\in\Cal H$.
Now take any $G\in\tilde\Sigma$ such that $\tilde\mu(H\setminus G)=0$
for every $H\in\Cal H$. \Quer\ If $\tilde\mu(F\setminus G)>0$, there
is an $E_0\in\Sigma^f$ such that $E_0\subseteq F\setminus G$ and
$\mu E_0>0$. If $E\in\Cal E$, there is an
$H\in\Cal H$ such that $E\subseteq H$, so that
$E\setminus(F\setminus E_0)\subseteq H\setminus(F\cap G)$, while
$\mu(E\setminus(F\setminus E_0))<\infty$; so
\Centerline{$\mu(E\setminus(F\setminus E_0))
\le\tilde\mu(H\setminus(F\cap G))
\le\tilde\mu(H\setminus F)+\tilde\mu(H\setminus G)
=0$.}
\noindent Because $F$ is an essential supremum for $\Cal E$ in $\Sigma$,
\Centerline{$0
=\mu(F\setminus(F\setminus E_0))
=\mu E_0$. \Bang}
\noindent This shows that $F$ is an essential supremum for $\Cal H$ in
$\tilde\Sigma$. As $\Cal H$ is arbitrary, $(X,\tilde\Sigma,\tilde\mu)$
is localizable.
\medskip
\quad{\bf (iii)} The argument of (i)-(ii) shows in fact that if $\Cal
H\subseteq\tilde\Sigma$ then $\Cal H$ has an essential supremum $F$ in
$\tilde\Sigma$ such that $F$ actually belongs to $\Sigma$. Taking
$\Cal H=\{H\}$, we see that if $H\in\tilde\Sigma$ there is an
$F\in\Sigma$ such that $\mu(H\symmdiff F)=0$.
\medskip
{\bf (c)} We already know that $\tilde\mu E\le\mu E$ for every
$E\in\Sigma$, with equality if $\mu E<\infty$, by 213Fa.
\medskip
\quad{\bf (i)} If $(X,\Sigma,\mu)$ is semi-finite, then 213A
and 213F(c-i) tell us that for any $F\in\Sigma$ we have
\Centerline{$\mu F
=\sup\{\mu E:E\in\Sigma,\,E\subseteq F,\,\mu E<\infty\}
=\tilde\mu F$.}
\medskip
\quad{\bf (ii)} Suppose that $\tilde\mu F=\mu F$ for every $F\in\Sigma$.
If $\mu F=\infty$, then $\tilde\mu F=\infty$ so (by 213F(c-i) again)
there must be an $E\in\Sigma^f$ such that $E\subseteq F$ and
$\mu E>0$; as $F$ is arbitrary, $(X,\Sigma,\mu)$ is
semi-finite.
\medskip
\quad{\bf (iii)} If $f$ is non-negative and $\int fd\mu=\infty$, then
$f$ is $\mu$-virtually measurable, therefore $\tilde\Sigma$-measurable
(213Ga), and defined $\mu$-almost everywhere, therefore
$\tilde\mu$-almost everywhere. Now
$$\eqalign{\int fd\tilde\mu
&=\sup\{\int g\,d\tilde\mu:g\text{ is }\tilde\mu\text{-simple},\,
0\le g\le f\,\,\tilde\mu\text{-a.e.}\}\cr
&\ge\sup\{\int g\,d\mu:g\text{ is }\mu\text{-simple},\,
0\le g\le f\,\,\mu\text{-a.e.}\}=\infty\cr}$$
\noindent by 213B. With 213Gb, this shows that
$\int fd\tilde\mu=\int fd\mu$ whenever $f$ is non-negative and
$\int fd\mu$ is defined in $[0,\infty]$. Applying this to the positive
and negative parts of $f$, we see that $\int fd\tilde\mu=\int fd\mu$
whenever the latter is defined in $[-\infty,\infty]$.
\medskip
{\bf (d)(i)} If $H\in\tilde\Sigma$ is an atom for $\tilde\mu$, then
there is an $E\in\Sigma^f$ such that $E\subseteq H$ and $0<\mu E<\infty$.
In this case, $\tilde\mu E>0$ so $\tilde\mu(H\setminus E)$ must be zero.
If $F\in\Sigma$ and $F\subseteq E$, then either
$\mu F=\tilde\mu F=0$ or $\mu(E\setminus F)=\tilde\mu(H\setminus F)=0$.
Thus $E\in\Sigma$ is an atom for $\mu$ with
$\tilde\mu(H\symmdiff E)=0$ and $\mu E<\infty$.
\medskip
\quad{\bf (ii)} If $H\in\tilde\Sigma$ and there is an atom $E$ for $\mu$
such that $\mu E<\infty$ and $\tilde\mu(H\symmdiff E)=0$, let
$G\in\tilde\Sigma$ be a subset of $H$ with $\tilde\mu G>0$.
We have $\tilde\mu(E\cap G)=\tilde\mu(H\cap G)>0$, so there is an
$F\in\Sigma$ such that $F\subseteq E\cap G$ and $\mu F>0$. Now
$\mu(E\setminus F)$ must be zero, so
\Centerline{$\tilde\mu(H\setminus G)\le\tilde\mu(H\setminus F)
=\tilde\mu(E\setminus F)=\mu(E\setminus F)=0$.}
\noindent As $G$ is arbitrary, $H$ is an atom for $\tilde\mu$.
\medskip
{\bf (e)} If $(X,\Sigma,\mu)$ is atomless, then
$(X,\tilde\Sigma,\tilde\mu)$ must be atomless, by (d).
If $(X,\Sigma,\mu)$ is purely atomic, $H\in\tilde\Sigma$ and
$\tilde\mu H>0$, then there is an $E\in\Sigma^f$ such that
$E\subseteq H$ and $\mu E>0$.
There is an atom $F$ for $\mu$ such that $F\subseteq E$; now
$\mu F<\infty$ so $F$ is an atom for $\tilde\mu$, by (d). Also
$F\subseteq H$. As $H$ is arbitrary, $(X,\tilde\Sigma,\tilde\mu)$ is
purely atomic.
\medskip
{\bf (f)} If $\mu=\tilde\mu$, then of course $(X,\Sigma,\mu)$ must be
complete and locally determined, because $(X,\tilde\Sigma,\tilde\mu)$
is. If $(X,\Sigma,\mu)$ is complete and locally determined, then
$\hat\mu=\mu$ so (using the definition in 213D)
$\tilde\Sigma\subseteq\Sigma$ and $\tilde\mu=\mu$, by (c) above.
}%end of proof of 213H
\leader{213I}{Locally determined negligible \dvrocolon{sets}}\cmmnt{
The following simple idea is occasionally useful.
\medskip
\noindent}{\bf Definition} A measure space $(X,\Sigma,\mu)$ has
{\bf locally determined negligible sets} if for every non-negligible
$A\subseteq X$ there is an $E\in\Sigma$ such that $\mu E<\infty$ and
$A\cap E$ is not negligible.
\leader{213J}{Proposition} If a measure space $(X,\Sigma,\mu)$ is
{\it either} strictly localizable {\it or} complete and locally
determined, it has locally determined negligible sets.
\proof{ Let $A\subseteq X$ be a set such that $A\cap E$ is negligible
whenever $\mu E<\infty$; I need to show that $A$ is negligible.
\medskip
{\bf (i)} If $\mu$ is strictly localizable, let $\familyiI{X_i}$ be a
decomposition of $X$. For each $i\in I$, $A\cap X_i$ is negligible, so
there we can choose
a negligible $E_i\in\Sigma$ such that $A\cap X_i\subseteq E_i$.
Set $E=\bigcup_{i\in I}E_i\cap X_i$. Then
$\mu E=\sum_{i\in I}\mu(E_i\cap X_i)=0$ and $A\subseteq E$, so $A$ is
negligible.
\medskip
{\bf (ii)} If $\mu$ is complete and locally determined, take any
measurable set $E$ of finite measure. Then $A\cap E$ is negligible,
therefore measurable; as $E$ is arbitrary, $A$ is measurable; as $\mu$
is semi-finite, $A$ is negligible.
}%end of proof of 213J
\leader{*213K}{Lemma} If a measure space $(X,\Sigma,\mu)$ has locally
determined negligible sets, and $\Cal E\subseteq\Sigma$ has an essential
supremum $H\in\Sigma$\cmmnt{ in the sense of 211G}, then
$H\setminus\bigcup\Cal E$ is negligible.
\proof{ Set $A=H\setminus\bigcup\Cal E$. Take any $F\in\Sigma$ such
that $\mu F<\infty$. Then
$F\cap A$ has a measurable envelope $V$ say (132Ee again).
If $E\in\Cal E$, then
\Centerline{$\mu(E\setminus(X\setminus V))
=\mu(E\cap V)=\mu^*(E\cap F\cap A)=0$,}
\noindent so $H\cap V=H\setminus(X\setminus V)$ is negligible and
$F\cap A$ is negligible. As $F$ is arbitrary and $\mu$ has locally
determined negligible sets, $A$ is negligible, as claimed.
}%end of proof of 213K
\leader{213L}{Proposition} Let $(X,\Sigma,\mu)$ be a localizable measure
space with locally determined negligible sets.
Then every subset $A$ of $X$ has a measurable envelope.
\proof{ Set
\Centerline{$\Cal E=\{E:E\in\Sigma,\,\mu^*(A\cap E)=\mu E<\infty\}$.}
\noindent Let $G$ be an essential supremum for $\Cal E$ in $\Sigma$.
\medskip
\quad{\bf (i)} $A\setminus G$ is negligible. \Prf\ Let $F$ be any set
of finite measure for $\mu$. Let $E$ be a measurable envelope of
$A\cap F$. Then $E\in\Cal E$ so $E\setminus G$ is negligible. But
$F\cap A\setminus G\subseteq E\setminus G$, so $F\cap A\setminus G$ is
negligible. Because $\mu$ has locally determined negligible sets,
this is enough to show that $A\setminus G$ is negligible.\ \Qed
\medskip
\quad{\bf (ii)} Let $E_0$ be a negligible measurable set including
$A\setminus G$, and set $\tilde G=E_0\cup G$, so that
$\tilde G\in\Sigma$,
$A\subseteq\tilde G$ and $\mu(\tilde G\setminus G)=0$. \Quer\
Suppose, if
possible, that there is an $F\in\Sigma$ such that
$\mu^*(A\cap F)<\mu(\tilde G\cap F)$. Let $F_1\subseteq F$ be a
measurable envelope of $A\cap F$. Set $H=X\setminus(F\setminus F_1)$;
then $A\subseteq H$. If $E\in\Cal E$ then
\Centerline{$\mu E=\mu^*(A\cap E)\le\mu(H\cap E)$,}
\noindent so $E\setminus H$ is negligible; as $E$ is arbitrary,
$G\setminus H$ is negligible and $\tilde G\setminus H$ is negligible.
But $\tilde G\cap F\setminus F_1\subseteq\tilde G\setminus H$ and
\Centerline{$\mu(\tilde G\cap F\setminus F_1)
=\mu(\tilde G\cap F)-\mu^*(A\cap F)>0$. \Bang}
This shows that $\tilde G$ is a measurable envelope of $A$, as required.
}%end of proof of 213L
\leader{213M}{Corollary} (a) If $(X,\Sigma,\mu)$ is $\sigma$-finite, then
every subset of $X$ has a measurable envelope for $\mu$.
(b) If $(X,\Sigma,\mu)$ is localizable, then every subset of $X$ has a
measurable envelope for the c.l.d.\ version of $\mu$.
\proof{{\bf (a)} Use 132Ee, or 213L, 211Lc and 213J.
\medskip
{\bf (b)} Use 213L and the fact that the c.l.d.\ version of $\mu$ is
localizable as well as being complete and locally determined (213Hb).
}%end of proof of 213M
\leader{213N}{}\cmmnt{ When we come to use the concept of
`localizability', it will frequently be through the following
property, which in fact characterizes localizable spaces (213Xm).
\medskip
\noindent}{\bf Theorem} Let $(X,\Sigma,\mu)$ be a localizable measure
space. Suppose that $\Phi$ is a family of measurable real-valued
functions, all defined on measurable subsets of $X$, such that whenever
$f$, $g\in\Phi$ then $f=g$ almost everywhere in $\dom f\cap\dom g$.
Then there is a measurable function $h:X\to\Bbb R$ such that every
$f\in\Phi$ agrees with $h$ almost everywhere in $\dom f$.
\proof{ For $q\in\Bbb Q$, $f\in\Phi$ set
\Centerline{$E_{fq}=\{x:x\in\dom f,\,f(x)\ge q\}\in\Sigma$.}
\noindent For each $q\in\Bbb Q$, let $E_q$ be an essential supremum of
$\{E_{fq}:f\in\Phi\}$ in $\Sigma$. Set
\Centerline{$h^*(x)=\sup\{q:q\in\Bbb Q,\,x\in E_q\}\in[-\infty,\infty]$}
\noindent for $x\in X$, taking $\sup\emptyset=-\infty$ if necessary.
If $f$, $g\in\Phi$ and $q\in\Bbb Q$, then
$$\eqalign{E_{fq}\setminus(X\setminus(\dom g\setminus E_{gq}))
&=E_{fq}\cap\dom g\setminus E_{gq}\cr
&\subseteq\{x:x\in\dom f\cap\dom g,\,f(x)\ne g(x)\}\cr}$$
\noindent is negligible; as $f$ is arbitrary,
\Centerline{$E_q\cap\dom g\setminus E_{gq}=E_q\setminus(X\setminus(\dom
g\setminus E_{gq}))$}
\noindent is negligible. Also $E_{gq}\setminus E_q$ is negligible, so
$E_{gq}\symmdiff(E_q\cap\dom g)$ is negligible. Set
$H_g=\bigcup_{q\in\Bbb Q}E_{gq}\symmdiff(E_q\cap\dom g)$; then $H_g$
is negligible. But if $x\in\dom g\setminus H_g$, then, for every
$q\in\Bbb Q$, $x\in E_q\iff x\in E_{gq}$; it follows that for such $x$,
$h^*(x)=g(x)$. Thus $h^*=g$ almost everywhere in $\dom g$; and this
is true for every $g\in\Phi$.
The function $h^*$ is not necessarily real-valued. But it is
measurable, because
\Centerline{$\{x:h^*(x)>a\}=\bigcup\{E_q:q\in\Bbb Q,\,q>a\}\in\Sigma$}
\noindent for every real $a$. So if we modify it by setting
$$\eqalign{h(x)&=h^*(x)\text{ if }h(x)\in\Bbb R,\cr
&=0\text{ if }h^*(x)\in\{-\infty,\infty\},\cr}$$
\noindent we shall get a measurable real-valued function $h:X\to\Bbb R$;
and for any $g\in\Phi$, $h(x)$ will be equal to $g(x)$ at least whenever
$h^*(x)=g(x)$, which is true for almost every $x\in\dom g$. Thus $h$
is a suitable function.
}%end of proof of 213N
\leader{213O}{}\cmmnt{ There is an interesting and useful criterion
for a space to be strictly localizable which I introduce at this point,
though it will be used rarely in this volume.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a complete locally
determined space.
(a) Suppose that there is a disjoint family $\Cal E\subseteq\Sigma$
such that ($\alpha$) $\mu E<\infty$ for every $E\in\Cal E$
($\beta$) whenever $F\in\Sigma$ and $\mu F>0$ then there is an
$E\in\Cal E$
such that $\mu(E\cap F)>0$. Then $(X,\Sigma,\mu)$ is strictly
localizable, $\bigcup\Cal E$ is conegligible, and
$\Cal E\cup\{X\setminus\bigcup\Cal E\}$ is a
decomposition of $X$.
(b) Suppose that $\langle X_i\rangle_{i\in I}$ is a partition of $X$
into
measurable sets of finite measure such that whenever $E\in\Sigma$ and
$\mu E>0$ there is an $i\in I$ such that $\mu(E\cap X_i)>0$. Then
$(X,\Sigma,\mu)$ is strictly localizable, and
$\langle X_i\rangle_{i\in I}$ is a decomposition of $X$.
\proof{{\bf (a)(i)}
The first thing to note is that if $F\in\Sigma$ and
$\mu F<\infty$, there is a countable
$\Cal E'\subseteq\Cal E$ such that
$\mu(F\setminus\bigcup\Cal E')=0$. \Prf\ Set
\Centerline{$\Cal E'_n=\{E:E\in\Cal E,\,\mu(F\cap E)\ge 2^{-n}\}$ for
each $n\in\Bbb N$,}
\Centerline{$\Cal E'=\bigcup_{n\in\Bbb N}\Cal E'_n=\{E:E\in\Cal
E,\,\mu(F\cap E)>0\}$.}
\noindent Because $\Cal E$ is disjoint, we must have
\Centerline{$\#(\Cal E'_n)\le 2^n\mu F$}
\noindent for every $n\in\Bbb N$, so that every $\Cal E'_n$ is finite
and $\Cal E'$, being the union of a sequence of countable sets, is
countable. Set $E'=\bigcup\Cal E'$ and $F'=F\setminus E'$, so that
both $E'$ and $F'$ belong to $\Sigma$. If $E\in\Cal E'$, then
$E\subseteq E'$ so $\mu(E\cap F')=\mu\emptyset=0$; if $E\in\Cal
E\setminus\Cal E'$, then $\mu(E\cap F')=\mu(E\cap F)=0$. Thus
$\mu(E\cap F')=0$ for every $E\in\Cal E$. By the hypothesis ($\beta$)
on
$\Cal E$, $\mu F'=0$, so $\mu(F\setminus\bigcup\Cal E')=0$, as
required.\ \Qed
\medskip
\quad{\bf (ii)} Now suppose that $H\subseteq X$ is such that $H\cap
E\in\Sigma$ for every $E\in\Cal E$. In this case $H\in\Sigma$. \Prf\
Let $F\in\Sigma$ be such that $\mu F<\infty$. Let $\Cal
E'\subseteq\Cal E$ be a countable set such that $\mu(F\setminus E')=0$,
where $E'=\bigcup\Cal E'$. Then $H\cap(F\setminus E')\in\Sigma$
because $(X,\Sigma,\mu)$ is complete. But also $H\cap
E'=\bigcup_{E\in\Cal E'}H\cap E\in\Sigma$. So
\Centerline{$H\cap F=(H\cap(F\setminus E'))\cup(F\cap(H\cap
E'))\in\Sigma$.}
\noindent As $F$ is arbitrary and $(X,\Sigma,\mu)$ is locally
determined, $H\in\Sigma$.\ \Qed
\medskip
\quad{\bf (iii)} We find also that $\mu H=\sum_{E\in\Cal E}\mu(H\cap E)$
for every $H\in\Sigma$. \Prf\ {($\alpha$)} Because $\Cal E$ is
disjoint, we
must have $\sum_{E\in\Cal E'}\mu(H\cap E)\le\mu H$ for every finite
$\Cal E'\subseteq\Cal E$, so
\Centerline{$\sum_{E\in\Cal E}\mu(H\cap E)
=\sup\{\sum_{E\in\Cal E'}
\mu(H\cap E):\Cal E'\subseteq\Cal E$ is finite$\}\le\mu H$.}
\noindent ($\beta$) For the reverse inequality, consider first the case
$\mu H<\infty$. By (i), there is a countable $\Cal E'\subseteq\Cal E$
such that $\mu(H\setminus\bigcup\Cal E')=0$, so that
\Centerline{$\mu H=\mu(H\cap\bigcup\Cal E')
=\sum_{E\in\Cal E'}\mu(H\cap E)\le\sum_{E\in\Cal E}\mu(H\cap E)$.}
\noindent{($\gamma$)} In general, because $(X,\Sigma,\mu)$ is
semi-finite,
$$\eqalign{\mu H
&=\sup\{\mu F:F\subseteq H,\,\mu F<\infty\}\cr
&\le\sup\{\sum_{E\in\Cal E}\mu(F\cap E):F\subseteq H,\,\mu F<\infty\}
\le\sum_{E\in\Cal E}\mu(H\cap E).\cr}$$
\noindent So in all cases we have
$\mu H\le\sum_{E\in\Cal E}\mu(H\cap E)$, and the two are equal.\ \Qed
\medskip
\quad{\bf (iv)} In particular, setting $E_0=X\setminus\bigcup\Cal E$,
$E_0\in\Sigma$ and $\mu E_0=0$; that is, $\bigcup\Cal E$ is
conegligible.
Consider $\Cal E^*=\Cal E\cup\{E_0\}$.
This is a partition of $X$ into sets of finite measure (now using the
hypothesis ($\alpha$) on $\Cal E$). If $H\subseteq X$ is such that
$H\cap E\in\Sigma$ for every $E\in\Cal E^*$, then $H\in\Sigma$ and
\Centerline{$\mu H=\sum_{E\in\Cal E}\mu(H\cap E)
=\sum_{E\in\Cal E^*}\mu(H\cap E)$.}
\noindent Thus $\Cal E^*$ (or, if you prefer, the indexed family
$\langle E\rangle_{E\in\Cal E^*}$) is a decomposition witnessing that
$(X,\Sigma,\mu)$ is strictly localizable.
\medskip
{\bf (b)} Apply (a) with $\Cal E=\{X_i:i\in I\}$, noting that $E_0$ in
(iv) is empty, so can be dropped.
}%end of proof of 213O
\exercises{
\leader{213X}{Basic exercises (a)}
%\spheader 213Xa
Let $(X,\Sigma,\mu)$ be any measure space, $\mu^*$ the outer measure
defined from $\mu$, and $\check\mu$ the measure defined by
\Caratheodory's method from $\mu^*$; write $\check\Sigma$ for the
domain of $\check\mu$. Show that
(i) $\check\mu$ extends the completion $\hat\mu$ of $\mu$;
(ii) if $H\subseteq X$ is such that
$H\cap F\in\check\Sigma$ whenever $F\in\Sigma$ and $\mu F<\infty$, then
$H\in\check\Sigma$;
(iii) $(\check\mu)^*=\mu^*$, so that the integrable functions
for $\check\mu$ and $\mu$ are the same (212Xb); (iv) if $\mu$ is
strictly localizable then $\check\mu=\hat\mu$; (v) if $\mu$ is defined
by \Caratheodory's method from another outer measure, then $\mu=\check\mu$
(cf.\ 132Xa).
%213C
\sqheader 213Xb
Let $\mu$ be counting measure restricted to the
countable-cocountable $\sigma$-algebra of a set $X$ (211R, 211Ye).
(i) Show that the c.l.d.\ version $\tilde\mu$ of $\mu$ is just counting
measure on $X$. (ii) Show that $\check\mu$, as defined in 213Xa, is
equal to $\tilde\mu$, and in particular strictly extends the completion
of $\mu$ if $X$ is uncountable.
%213E
\spheader 213Xc Let $(X,\Sigma,\mu)$ be any measure space. For
$E\in\Sigma$ set
\Centerline{$\mu_{\text{sf}}E
=\sup\{\mu(E\cap F):F\in\Sigma,\,\mu F<\infty\}$.}
\quad{(i)} Show that $(X,\Sigma,\mu_{\text{sf}})$ is a semi-finite measure
space, and is equal to $(X,\Sigma,\mu)$ iff $(X,\Sigma,\mu)$ is
semi-finite.
\quad{(ii)} Show that a $\mu$-integrable real-valued function $f$ is
$\mu_{\text{sf}}$-integrable, with the same integral.
\quad(iii) Show that if $E\in\Sigma$ then $E$
can be expressed as $E_1\cup E_2$ where $E_1$, $E_2\in\Sigma$,
$\mu E_1=\mu_{\text{sf}}E_1$ and $\mu_{\text{sf}}E_2=0$.
\quad{(iv)} Show that if $f$ is a $\mu_{\text{sf}}$-integrable real-valued
function on $X$, it is equal $\mu_{\text{sf}}$-almost everywhere to a
$\mu$-integrable function.