forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt214.tex
1250 lines (973 loc) · 48.4 KB
/
mt214.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt214.tex}
\versiondate{22.5.09}
\copyrightdate{2009}
\def\chaptername{Taxonomy of measure spaces}
\def\sectionname{Subspaces}
\newsection{214}
In \S131 I described a construction for subspace measures on measurable
subsets. It is now time to give the generalization to subspace
measures
on arbitrary subsets of a measure space. The relationship between this
construction and the properties listed in \S211 is not quite as
straightforward as one might imagine, and in this section I try to give
a full account of what can be expected of subspaces in general. I
think that for the present volume only (i) general subspaces of
$\sigma$-finite spaces and
(ii) measurable subspaces of general measure spaces will be
needed in any essential way, and these do not give any difficulty; but
in later volumes we shall need the full theory.
I begin with a general construction for `subspace measures'
(214A-214C), %214A 214B 214C
with an account of integration with respect to a subspace
measure (214E-214G); %214E 214F 214G
these (with 131E-131H) %131E 131F 131G 131H
give a solid foundation for
the concept of `integration over a subset' (214D). I present
this work in its full natural generality, which will eventually be
essential, but even for Lebesgue measure alone it is important to be
aware of the ideas here. I continue with answers to some obvious
questions concerning subspace measures and the properties of measure
spaces so far considered, both for general subspaces (214I) and for
measurable subspaces (214K), and I mention a basic construction for
assembling measure spaces side-by-side, the `direct sums' of 214L-214M.
At the end of the section I discuss a measure extension problem
(214O-214P).
\leader{214A}{Proposition} Let $(X,\Sigma,\mu)$ be a measure space, and
$Y$ any subset of $X$. Let $\mu^*$ be the outer measure defined from
$\mu$\cmmnt{ (132A-132B)}, and set $\Sigma_Y=\{E\cap Y:E\in\Sigma\}$; let
$\mu_Y$ be the restriction of $\mu^*$ to $\Sigma_Y$. Then
$(Y,\Sigma_Y,\mu_Y)$ is a measure space.
\proof{{\bf (a)} I have noted in 121A that $\Sigma_Y$ is a
$\sigma$-algebra of subsets of $Y$.
\medskip
{\bf (b)} Of course $\mu_YF\in[0,\infty]$ for
every $F\in\Sigma_Y$.
\medskip
{\bf (c)} $\mu_Y\emptyset=\mu^*\emptyset=0$.
\medskip
{\bf (d)} If $\sequencen{F_n}$ is a disjoint sequence in $\Sigma_Y$ with
union $F$, then choose $E_n$, $E'_n$, $E\in\Sigma$ such that
$F_n=Y\cap E_n$, $F_n\subseteq E'_n$ and $\mu_YF_n=\mu E'_n$ for each
$n$, $F\subseteq E$ and $\mu_YF=\mu E$ (using 132Aa repeatedly). Set
$G_n=E_n\cap E'_n\cap E\setminus\bigcup_{m<n}E_m$ for each $n\in\Bbb N$;
then $\sequencen{G_n}$ is disjoint and $F_n\subseteq G_n\subseteq E'_n$
for each $n$, so $\mu_YF_n=\mu G_n$. Also
$F\subseteq\bigcup_{n\in\Bbb N}G_n\subseteq E$, so
\Centerline{$\mu_YF=\mu(\bigcup_{n\in\Bbb N}G_n)
=\sum_{n=0}^{\infty}\mu G_n=\sum_{n=0}^{\infty}\mu_YF_n$.}
\noindent As $\sequencen{F_n}$ is
arbitrary, $\mu_Y$ is a measure.
}%end of proof of 214A
\leader{214B}{Definition} If $(X,\Sigma,\mu)$ is any measure space and
$Y$ is any subset of $X$, then $\mu_Y$, defined as in 214A, is the {\bf
subspace measure} on $Y$.
\cmmnt{It is worth noting the following.}
\leader{214C}{Lemma} Let $(X,\Sigma,\mu)$ be a measure space, $Y$ a
subset of $X$, $\mu_Y$ the subspace measure on $Y$ and $\Sigma_Y$ its
domain. Then
(a) for any $F\in\Sigma_Y$, there is an $E\in\Sigma$ such that
$F=E\cap Y$ and $\mu E=\mu_YF$;
(b) for any $A\subseteq Y$, $A$ is $\mu_Y$-negligible iff it is
$\mu$-negligible;
(c)(i) if $A\subseteq X$ is $\mu$-conegligible, then $A\cap Y$
is $\mu_Y$-conegligible;
\quad (ii) if $A\subseteq Y$ is
$\mu_Y$-conegligible, then $A\cup(X\setminus Y)$ is $\mu$-conegligible;
(d) $(\mu_Y)^*$\cmmnt{, the outer measure on $Y$ defined from
$\mu_Y$,} agrees with $\mu^*$ on $\Cal PY$;
(e) if $Z\subseteq Y\subseteq X$, then
$\Sigma_Z=(\Sigma_Y)_Z$, the subspace $\sigma$-algebra of
subsets of $Z$ regarded as a subspace of $(Y,\Sigma_Y)$, and
$\mu_Z=(\mu_Y)_Z$ is the subspace measure on $Z$
regarded as a subspace of $(Y,\mu_Y)$;
(f) if $Y\in\Sigma$, then $\mu_Y$, as defined here, is exactly the
subspace measure on $Y$ defined in 131A-131B\cmmnt{; that is,
$\Sigma_Y=\Sigma\cap\Cal PY$ and $\mu_Y=\mu\restr\Sigma_Y$}.
\proof{{\bf (a)} By the definition of $\Sigma_Y$, there is an
$E_0\in\Sigma$ such that $F=E_0\cap Y$. By 132Aa, there is an
$E_1\in\Sigma$ such that $F\subseteq E_1$ and $\mu^*F=\mu E_1$. Set
$E=E_0\cap E_1$; this serves.
\medskip
{\bf (b)}(i) If $A$ is $\mu_Y$-negligible, there
is a set $F\in\Sigma_Y$ such that $A\subseteq F$ and $\mu_YF=0$; now
$\mu^*A\le\mu^*F=0$ so $A$ is $\mu$-negligible, by 132Ad. (ii)
If $A$ is
$\mu$-negligible, there is an $E\in\Sigma$ such that $A\subseteq E$ and
$\mu E=0$; now $A\subseteq E\cap Y\in\Sigma_Y$ and $\mu_Y(E\cap Y)=0$,
so $A$ is $\mu_Y$-negligible.
\medskip
{\bf (c)} If $A\subseteq X$ is $\mu$-conegligible, then $A\cap Y$
is $\mu_Y$-conegligible, because $Y\setminus A=Y\cap(X\setminus A)$ is
$\mu$-negligible, therefore $\mu_Y$-negligible. If $A\subseteq Y$ is
$\mu_Y$-conegligible, then $A\cup(X\setminus Y)$ is $\mu$-conegligible
because $X\setminus(A\cup(X\setminus Y))=Y\setminus A$ is
$\mu_Y$-negligible, therefore $\mu$-negligible.
\medskip
{\bf (d)} Let $A\subseteq Y$. (i) If
$A\subseteq E\in\Sigma$, then $A\subseteq E\cap Y\in\Sigma_Y$, so
$\mu_Y^*A\le\mu_Y(E\cap Y)\le\mu E$; as $E$ is arbitrary,
$\mu_Y^*A\le\mu^*A$. (ii) If $A\subseteq F\in\Sigma_Y$, there is
an $E\in\Sigma$ such that $F\subseteq E$ and $\mu_YF=\mu^*F=\mu E$;
now $A\subseteq E$ so $\mu^*A\le\mu E=\mu_YF$. As $F$ is arbitrary,
$\mu^*A\le\mu_Y^*A$.
\medskip
{\bf (e)} That $\Sigma_Z=(\Sigma_Y)_Z$ is immediate from the definition
of $\Sigma_Y$, etc.; now
\Centerline{$(\mu_Y)_Z=
\mu_Y^*\restr\Sigma_Z=\mu^*\restr\Sigma_Z=\mu_Z$}
\noindent by (d).
\medskip
{\bf (f)} This is elementary, because $E\cap Y\in\Sigma$ and
$\mu^*(E\cap Y)=\mu(E\cap Y)$ for every $E\in\Sigma$.
}%end of proof of 214C
\leader{214D}{Integration over subsets: Definition} Let
$(X,\Sigma,\mu)$ be a measure
space, $Y$ a subset of $X$ and $f$ a $[-\infty,\infty]$-valued function
defined on a
subset of $X$. By $\int_Y f$\cmmnt{ (or $\int_Y f(x)\mu(dx)$, etc.)}
I mean $\int(f\restrp Y)d\mu_Y$, if this exists in
$[-\infty,\infty]$\cmmnt{, following the definitions of
214A-214B, 133A and 135F, and taking $\dom(f\restrp Y)=Y\cap\dom f$,
$(f\restrp Y)(x)=f(x)$ for $x\in Y\cap\dom f$}. \cmmnt{(Compare
131D.)}
\leader{214E}{Proposition} Let $(X,\Sigma,\mu)$ be a measure space,
$Y\subseteq X$, and $f$ a
$[-\infty,\infty]$-valued function defined on a subset $\dom f$ of $X$.
(a) If $f$ is $\mu$-integrable then $f\restrp Y$ is $\mu_Y$-integrable, and
$\int_Y f\le\int f$ if $f$ is non-negative.
(b) If $\dom f\subseteq Y$ and $f$ is $\mu_Y$-integrable, then there is
a $\mu$-integrable function $\tilde f$ on $X$, extending $f$, such that
$\int_F\tilde f=\int_{F\cap Y}f$ for every $F\in\Sigma$.
\proof{{\bf (a)(i)} If $f$ is $\mu$-simple, it is expressible as
$\sum_{i=0}^na_i\chi E_i$, where $E_0,\ldots,E_n\in\Sigma$,
$a_0,\ldots,a_n\in\Bbb R$ and $\mu E_i<\infty$ for each $i$. Now
$f\restrp Y=\sum_{i=0}^na_i\chi_Y(E_i\cap Y)$, where $\chi_Y(E_i\cap
Y)=(\chi E_i)\restrp Y$ is the indicator function of $E_i\cap Y$
regarded as a subset of $Y$; and each $E_i\cap Y$ belongs to
$\Sigma_Y$, with $\mu_Y(E_i\cap Y)\le\mu E_i<\infty$, so $f\restr
Y:Y\to\Bbb R$ is $\mu_Y$-simple.
If $f:X\to \Bbb R$ is a non-negative simple function, it is expressible
as $\sum_{i=0}^na_i\chi E_i$ where $E_0,\ldots,E_n$ are disjoint sets of
finite measure (122Cb). Now
$f\restrp Y=\sum_{i=0}^na_i\chi_Y(E_i\cap Y)$ and
\Centerline{$\int (f\restrp Y)d\mu_Y
=\sum_{i=0}^na_i\mu_Y(E_i\cap Y)\le\sum_{i=0}^na_i\mu E_i=\int fd\mu$}
\noindent because $a_i\ge 0$ whenever $E_i\ne\emptyset$, so that
$a_i\mu_Y(E_i\cap Y)\le a_i\mu E_i$ for every $i$.
\medskip
\quad{\bf (ii)} If $f$ is a non-negative $\mu$-integrable function,
there is a non-decreasing sequence $\sequencen{f_n}$ of non-negative
$\mu$-simple functions converging to $f\,\,\mu$-almost everywhere; now
$\sequencen{f_n\restrp Y}$ is a non-decreasing sequence of $\mu_Y$-simple
functions increasing to $f\restrp Y\,\,\mu_Y$-a.e.\ (by 214Cb), and
\Centerline{$\sup_{n\in\Bbb N}\int(f_n\restrp Y)d\mu_Y
\le\sup_{n\in\Bbb N}\int f_nd\mu
=\int fd\mu<\infty$,}
\noindent so $\int(f\restrp Y)d\mu_Y$ exists and is at most $\int fd\mu$.
\medskip
\quad{\bf (iii)} Finally, if $f$ is any $\mu$-integrable real-valued
function, it is expressible as $f_1-f_2$ where $f_1$ and $f_2$ are
non-negative $\mu$-integrable functions, so that
$f\restrp Y=(f_1\restrp Y)-(f_2\restrp Y)$ is $\mu_Y$-integrable.
\medskip
{\bf (b)} Let us say that if $f$ is a $\mu_Y$-integrable function, then
an `enveloping extension' of $f$ is a $\mu$-integrable function
$\tilde f$, extending $f$, real-valued on $X\setminus Y$, such that
$\int_F\tilde f=\int_{F\cap Y}f$ for every $F\in\Sigma$.
\medskip
\quad{\bf (i)} If $f$ is of the form $\chi H$, where $H\in\Sigma_Y$ and
$\mu_YH<\infty$, let $E_0\in\Sigma$ be such that $H=Y\cap E_0$ and
$E_1\in\Sigma$ a measurable envelope for $H$ (132Ee); then
$E=E_0\cap E_1$ is a measurable envelope for $H$ and $H=E\cap Y$. Set
$\tilde f=\chi E$, regarded as a function from $X$ to $\{0,1\}$. Then
$\tilde f\restrp Y=f$, and for any $F\in\Sigma$ we have
\Centerline{$\int_F\tilde f=\mu_F(E\cap F)=\mu(E\cap F)
=\mu^*(H\cap F)=\mu_{Y\cap F}(H\cap F)=\int_{Y\cap F}f$.}
\noindent So $\tilde f$ is an enveloping extension of $f$.
\medskip
\quad{\bf (ii)} If $f$, $g$ are $\mu_Y$-integrable functions with
enveloping extensions $\tilde f$, $\tilde g$, and $a$, $b\in\Bbb R$,
then $a\tilde f+b\tilde g$ extends $af+bg$ and
$$\eqalign{\int_Fa\tilde f+b\tilde g
&=a\int_F\tilde f+b\int_F\tilde g\cr
&=a\int_{F\cap Y}f+b\int_{F\cap Y}g
=\int_{F\cap Y}af+bg\cr}$$
\noindent for every $F\in\Sigma$, so $a\tilde f+b\tilde g$ is an
enveloping extension of $af+bg$.
\medskip
\quad{\bf (iii)} Putting (i) and (ii) together, we see that every
$\mu_Y$-simple function $f$ has an enveloping extension.
\medskip
\quad{\bf (iv)} Now suppose that $\sequencen{f_n}$ is a non-decreasing
sequence of non-negative $\mu_Y$-simple functions converging
$\mu_Y$-almost everywhere to a $\mu_Y$-integrable function $f$. For
each $n\in\Bbb N$ let $\tilde f_n$ be an enveloping extension of $f_n$.
Then $\tilde f_n\leae\tilde f_{n+1}$. \Prf\ If $F\in\Sigma$ then
\Centerline{$\int_F\tilde f_n=\int_{F\cap Y}f_n
\le\int_{F\cap Y}f_{n+1}=\int_F\tilde f_{n+1}$.}
\noindent So $\tilde f_n\leae\tilde f_{n+1}$, by 131Ha.\ \QeD\ Also
\Centerline{$\lim_{n\to\infty}\int_F\tilde f_n
=\lim_{n\to\infty}\int_{F\cap Y}f_n
=\int_{F\cap Y}f$}
\noindent for every $F\in\Sigma$. Taking $F=X$ to begin with, B.Levi's
theorem tells us that $h=\lim_{n\to\infty}\tilde f_n$ is defined (as a
real-valued function) $\mu$-almost everywhere; now letting $F$ vary, we
have $\int_Fh=\int_{F\cap Y}f$ for every $F\in\Sigma$, because
$h\restr F=\lim_{n\to\infty}\tilde f_n\restr F\,\,\mu_F$-a.e. (I seem
to be using 214Cb here.) Now $h\restrp Y=f\,\,\mu_Y$-a.e., by 214Cb
again. If we define $\tilde f$ by setting
\Centerline{$\tilde f(x)=f(x)$ for $x\in\dom f$, $h(x)$ for
$x\in\dom h\setminus\dom f$, $0$ for other $x\in X$,}
\noindent then $\tilde f$ is defined everywhere in $X$ and is equal to
$h\,\,\mu$-almost everywhere; so that if $F\in\Sigma$,
$\tilde f\restr F$ will be equal to $h\restr F\,\,\mu_F$-almost
everywhere, and
\Centerline{$\int_F\tilde f=\int_Fh=\int_{F\cap Y}f$.}
\noindent As $F$ is arbitrary, $\tilde f$ is an enveloping
extension of $f$.
\medskip
\quad{\bf (v)} Thus every non-negative $\mu_Y$-integrable function has
an enveloping extension. Using (ii) again, every $\mu_Y$-integrable
function has an enveloping extension, as claimed.
}%end of proof of 214E
\leader{214F}{Proposition} Let $(X,\Sigma,\mu)$ be a measure space, $Y$
a subset of $X$, and $f$ a $[-\infty,\infty]$-valued function such that
$\int_Xf$ is defined in $[-\infty,\infty]$. If {\it either} $Y$ has
full outer measure in $X$ {\it or} $f$ is zero almost everywhere in
$X\setminus Y$, then $\int_Yf$ is defined and equal to $\int_Xf$.
\proof{{\bf (a)} Suppose first that $f$ is non-negative,
$\Sigma$-measurable and defined everywhere in $X$. In this case
$f\restrp Y$ is $\Sigma_Y$-measurable. Set
$F_{nk}=\{x:x\in X,\,f(x)\ge 2^{-n}k\}$ for $k$, $n\in\Bbb N$,
$f_n=\sum_{k=1}^{4^n}2^{-n}\chi F_{nk}$ for $n\in\Bbb N$, so that
$\sequencen{f_n}$ is a non-decreasing sequence of real-valued measurable
functions converging everywhere to $f$, and
$\int_Xf=\lim_{n\to\infty}\int_Xf_n$. For each $n\in\Bbb N$ and $k\ge 1$,
\Centerline{$\mu_Y(F_{nk}\cap Y)=\mu^*(F_{nk}\cap Y)=\mu F_{nk}$}
\noindent either because $F_{nk}\setminus Y$ is negligible or because
$X$ is a measurable envelope of $Y$. So
$$\eqalignno{\int_Yf
&=\lim_{n\to\infty}\int_Yf_n
=\lim_{n\to\infty}\sum_{k=1}^{4^n}2^{-n}\mu_Y(F_{nk}\cap Y)\cr
&=\lim_{n\to\infty}\sum_{k=1}^{4^n}2^{-n}\mu F_{nk}
=\lim_{n\to\infty}\int_Xf_n
=\int_Xf.\cr}$$
\medskip
{\bf (b)} Now suppose that $f$ is non-negative, defined almost
everywhere in $X$ and $\mu$-virtually
measurable. In this case there is a conegligible measurable set
$E\subseteq\dom f$ such that $f\restr E$ is measurable. Set
$\tilde f(x)=f(x)$ for $x\in E$, $0$ for $x\in X\setminus E$; then
$\tilde f$
satisfies the conditions of (a) and $f=\tilde f\,\,\mu$-a.e.
Accordingly $f\restrp Y=\tilde f\restrp Y\,\,\mu_Y$-a.e.\ (214Cc), and
\Centerline{$\int_Yf=\int_Y\tilde f=\int_X\tilde f=\int_Xf$.}
\medskip
{\bf (c)} Finally, for the general case, we can apply (b) to the
positive and negative parts $f^+$, $f^-$ of $f$ to get
\Centerline{$\int_Yf=\int_Yf^+-\int_Yf^-=\int_Xf^+-\int_Xf^-=\int_Xf$.}
}%end of proof of 214F
\leader{214G}{Corollary} Let $(X,\Sigma,\mu)$ be a measure space, $Y$ a
subset of $X$, and $E\in\Sigma$ a measurable envelope of $Y$. If $f$
is a $[-\infty,\infty]$-valued function such that $\int_Ef$ is defined
in $[-\infty,\infty]$, then $\int_Yf$ is defined and equal to $\int_Ef$.
\proof{ By 214Ce, we can identify the subspace measure $\mu_Y$ with the
subspace measure $(\mu_E)_Y$ induced by the subspace measure on $E$.
Now, regarded as a subspace of $E$, $Y$ has full outer measure, so
214F gives the result.
}%end of proof of 214G
\leader{214H}{Subspaces and \Caratheodory's
\dvrocolon{method}}\cmmnt{ The following easy technical results will
occasionally be useful.
\medskip
\noindent}{\bf Lemma} Let $X$ be a set, $Y\subseteq X$ a subset, and
$\theta$ an outer measure on $X$.
(a) $\theta_Y=\theta\restrp\Cal PY$ is an outer measure on $Y$.
(b) Let $\mu$, $\nu$ be the measures on $X$, $Y$ defined by
\Caratheodory's method from the outer measures $\theta$, $\theta_Y$, and
$\Sigma$, $\Tau$ their domains; let $\mu_Y$ be the subspace measure on
$Y$ induced by $\mu$, and $\Sigma_Y$ its domain. Then
\quad (i) $\Sigma_Y\subseteq\Tau$ and $\nu F\le\mu_YF$ for every
$F\in\Sigma_Y$;
\quad(ii) if $Y\in\Sigma$ then $\nu=\mu_Y$;
\quad(iii) if $\theta=\mu^*$\cmmnt{ (that is, $\theta$ is
`regular')} then $\nu$ extends $\mu_Y$;
\quad(iv) if $\theta=\mu^*$ and $\theta Y<\infty$ then $\nu=\mu_Y$.
\proof{{\bf (a)} You have only to read the definition of `outer
measure' (113A).
\medskip
{\bf (b)(i)} Suppose that $F\in\Sigma_Y$. Then it is of the form
$E\cap Y$ where $E\in\Sigma$. If $A\subseteq Y$, then
\Centerline{$\theta_Y(A\cap F)+\theta_Y(A\setminus F)
=\theta(A\cap F)+\theta(A\setminus F)
=\theta(A\cap E)+\theta(A\setminus E)
=\theta A=\theta_YA$,}
\noindent so $F\in\Tau$. Now
\Centerline{$\nu F=\theta_YF=\theta F\le\mu^*F=\mu_YF$.}
\medskip
\quad{\bf (ii)} Suppose that $F\in\Tau$. If $A\subseteq X$, then
$$\eqalign{\theta A
&=\theta(A\cap Y)+\theta(A\setminus Y)
=\theta_Y(A\cap Y)+\theta(A\setminus Y)\cr
&=\theta_Y(A\cap Y\cap F)+\theta_Y(A\cap Y\setminus F)
+\theta(A\setminus Y)\cr
&=\theta(A\cap F)+\theta(A\cap Y\setminus F)+\theta(A\setminus Y)\cr
&=\theta(A\cap F)+\theta((A\setminus F)\cap Y)
+\theta((A\setminus F)\setminus Y)
=\theta(A\cap F)+\theta(A\setminus F);\cr}$$
\noindent as $A$ is arbitrary, $F\in\Sigma$ and therefore
$F\in\Sigma_Y$.
Also
\Centerline{$\mu_YF=\mu F=\theta F=\theta_YF=\nu F$.}
\noindent Putting this together with (i), we see that $\mu_Y$ and $\nu$
are identical.
\medskip
\quad{\bf (iii)} Let $F\in\Sigma_Y$. Then $F\in\Tau$, by (i).
Now $\nu F=\theta F=\mu^*F=\mu_YF$. As $F$ is arbitrary,
$\nu$ extends $\mu_Y$.
\medskip
\quad{\bf (iv)} Now suppose that $F\in\Tau$. Because
$\mu^*Y=\theta Y<\infty$, we have measurable envelopes $E_1$, $E_2$ of
$F$ and $Y\setminus F$ for $\mu$ (132Ee). Then
$$\eqalign{\theta Y
&=\theta_YY
=\theta_YF+\theta_Y(Y\setminus F)
=\theta F+\theta(Y\setminus F)\cr
&=\mu^*F+\mu^*(Y\setminus F)
=\mu E_1+\mu E_2\ge\mu(E_1\cup E_2)
=\theta(E_1\cup E_2)\ge\theta Y,\cr}$$
\noindent so $\mu E_1+\mu E_2=\mu(E_1\cup E_2)$ and
\Centerline{$\mu(E_1\cap E_2)=\mu E_1+\mu E_2-\mu(E_1\cup E_2)=0$.}
\noindent As $\mu$ is complete (212A) and
$E_1\cap Y\setminus F\subseteq E_1\cap E_2$ is $\mu$-negligible,
therefore belongs to
$\Sigma$, $F=Y\cap(E_1\setminus(E_1\cap Y\setminus F))$ belongs to
$\Sigma_Y$. Thus $\Tau\subseteq\Sigma_Y$; putting this together
with (iii), we see that $\nu=\mu_Y$.
}%end of proof of 214H
\leader{214I}{}\cmmnt{ I now turn to the relationships between
subspace measures and the classification of measure spaces developed in
this chapter.
\medskip
\noindent}{\bf Theorem} Let $(X,\Sigma,\mu)$ be a measure
space and $Y$ a subset of $X$. Let $\mu_Y$ be the subspace measure on
$Y$ and $\Sigma_Y$ its domain.
(a) If $(X,\Sigma,\mu)$ is complete, or totally finite, or
$\sigma$-finite, or strictly localizable, so is $(Y,\Sigma_Y,\mu_Y)$.
If $\langle X_i\rangle_{i\in I}$ is a decomposition of $X$ for $\mu$,
then $\langle X_i\cap Y\rangle_{i\in I}$ is a decomposition of $Y$ for
$\mu_Y$.
(b)
Writing $\hat\mu$ for the completion of $\mu$, the subspace measure
$\hat\mu_Y=(\hat\mu)_Y$ is the completion of $\mu_Y$.
(c) If $(X,\Sigma,\mu)$ has locally determined negligible sets,
then $\mu_Y$ is semi-finite.
(d) If $(X,\Sigma,\mu)$ is complete and locally determined, then
$(Y,\Sigma_Y,\mu_Y)$ is complete and semi-finite.
(e) If $(X,\Sigma,\mu)$ is complete, locally determined and localizable
then so is $(Y,\Sigma_Y,\mu_Y)$.
\proof{{\bf (a)(i)} Suppose that $(X,\Sigma,\mu)$ is complete.
If $A\subseteq U\in\Sigma_Y$ and $\mu_YU=0$, there is an $E\in\Sigma$
such that $U=E\cap Y$ and $\mu E=\mu_YU=0$; now $A\subseteq E$ so
$A\in\Sigma$ and $A=A\cap Y\in\Sigma_Y$.
\medskip
\quad{\bf (ii)}
$\mu_YY=\mu^*Y\le\mu X$, so $\mu_Y$ is totally finite if $\mu$ is.
\medskip
\quad{\bf (iii)} If $\sequencen{X_n}$ is a sequence of sets of finite
measure for $\mu$ which covers $X$, then $\sequencen{X_n\cap Y}$ is a
sequence of sets of finite measure for $\mu_Y$ which covers $Y$. So
$(Y,\Sigma_Y,\mu_Y)$ is $\sigma$-finite if $(X,\Sigma,\mu)$ is.
\medskip
\quad{\bf (iv)} Suppose that $\langle X_i\rangle_{i\in I}$ is a
decomposition of $X$ for $\mu$. Then $\langle X_i\cap
Y\rangle_{i\in I}$ is a decomposition of $Y$ for $\mu_Y$. \Prf\
Because $\mu_Y(X_i\cap Y)\le\mu X_i<\infty$ for each $i$,
$\langle X_i\cap Y\rangle_{i\in I}$ is a partition of $Y$ into sets of finite measure. Suppose that $U\subseteq Y$ is such that
$U_i=U\cap X_i\cap Y\in\Sigma_Y$ for every $i$. For each $i\in I$, choose $E_i\in\Sigma$
such that $U_i=E_i\cap Y$ and $\mu E_i=\mu_YU_i$; we may of course
suppose that $E_i\subseteq X_i$. Set $E=\bigcup_{i\in I}E_i$. Then
$E\cap X_i=E_i\in\Sigma$ for every $i$, so $E\in\Sigma$ and
$\mu E=\sum_{i\in I}\mu E_i$. Now $U=E\cap Y$ so $U\in\Sigma_Y$ and
\Centerline{$\mu_YU\le\mu E=\sum_{i\in I}\mu E_i
=\sum_{i\in I}\mu_YU_i$.}
\noindent On the other hand, $\mu_YU$ is surely greater than or equal to
$\sum_{i\in I}\mu_YU_i
=\sup_{J\subseteq I\text{ is finite}}\sum_{i\in J}\mu_YU_i$, so they are
equal. As $U$ is arbitrary,
$\langle X_i\cap Y\rangle_{i\in I}$ is a decomposition of $Y$ for
$\mu_Y$.\ \Qed
Consequently $(Y,\Sigma_Y,\mu_Y)$ is strictly localizable if
$(X,\Sigma,\mu)$ is.
\medskip
{\bf (b)} The domain of the completion $(\mu_Y)\sphat\mskip5mu$ is
$$\eqalignno{\hat\Sigma_Y
&=\{F\symmdiff A:F\in\Sigma_Y,\,A\subseteq Y
\text{ is }\mu_Y\text{-negligible}\}\cr
&=\{(E\cap Y)\symmdiff(A\cap Y):E\in\Sigma,\,
A\subseteq X\text{ is }\mu\text{-negligible}\}\cr
\displaycause{214Cb}
&=\{(E\symmdiff A)\cap Y:E\in\Sigma,\,
A\text{ is }\mu\text{-negligible}\}
=\dom\hat\mu_Y.\cr}$$
\noindent If $H\in\hat\Sigma_Y$ then
\Centerline{$(\mu_Y)\sphat\mskip3mu(H)
=\mu_Y^*H=\mu^*H=(\hat\mu)^*H=\hat\mu_YH$,}
\noindent using 214Cd for the second step, and 212Ea for the third.
\medskip
{\bf (c)} Take $U\in\Sigma_Y$ such
that $\mu_YU>0$. Then there is an $E\in\Sigma$ such that
$\mu E<\infty$
and $\mu^*(E\cap U)>0$. \Prf\Quer\ Otherwise, $E\cap U$ is
$\mu$-negligible whenever $\mu E<\infty$; because $\mu$ has locally determined negligible sets, $U$ is $\mu$-negligible and $\mu_YU=\mu^*U=0$.\ \Bang\QeD Now
$E\cap U\in\Sigma_Y$ and
\Centerline{$0<\mu^*(E\cap U)=\mu_Y(E\cap U)\le\mu E<\infty$.}
\medskip
{\bf (d)} By (a), $\mu_Y$ is complete; by 213J and (c) here, it is
semi-finite.
\medskip
{\bf (e)} By (d), $\mu_Y$ is complete and semi-finite.
To see that it is locally
determined, take any $U\subseteq Y$ such that $U\cap V\in\Sigma_Y$
whenever $V\in\Sigma_Y$ and $\mu_YV<\infty$. By 213J and 213L,
there is a
measurable envelope $E$ of $U$ for $\mu$; of course
$E\cap Y\in\Sigma_Y$.
I claim that $\mu(E\cap Y\setminus U)=0$. \Prf\ Take any $F\in\Sigma$
with $\mu F<\infty$. Then $F\cap U\in\Sigma_Y$, so
\Centerline{$\mu_Y(F\cap E\cap Y)\le\mu(F\cap E)=\mu^*(F\cap
U)=\mu_Y(F\cap U)\le\mu_Y(F\cap E\cap Y)$;}
\noindent thus $\mu_Y(F\cap E\cap Y)=\mu_Y(F\cap U)$ and
\Centerline{$\mu^*(F\cap E\cap Y\setminus U)
=\mu_Y(F\cap E\cap Y\setminus U)=0$.}
\noindent Because $\mu$ is complete, $\mu(F\cap E\cap Y\setminus U)=0$;
because $\mu$ is locally determined and $F$ is arbitrary,
$\mu(E\cap Y\setminus U)=0$.\ \QeD\ But this means that
$E\cap Y\setminus U\in\Sigma_Y$ and $U\in\Sigma_Y$. As $U$ is
arbitrary, $\mu_Y$ is locally determined.
To see that $\mu_Y$ is localizable,
let $\Cal U$ be any family in $\Sigma_Y$. Set
\Centerline{$\Cal E=\{E:E\in\Sigma,\,\mu E<\infty,\,
\mu E=\mu^*(E\cap U)$ for some $U\in\Cal U\}$,}
\noindent and let $G\in\Sigma$ be an essential supremum for $\Cal E$ in
$\Sigma$. I claim that $G\cap Y$ is an essential supremum for $\Cal U$
in $\Sigma_Y$. \Prf\ (i) \Quer\ If $U\in\Cal U$ and
$U\setminus(G\cap Y)$ is not negligible, then (because $\mu_Y$ is
semi-finite) there is a
$V\in\Sigma_Y$ such that $V\subseteq U\setminus G$ and
$0<\mu_YV<\infty$. Now there is an $E\in\Sigma$ such that
$V\subseteq E$ and $\mu E=\mu^*V$.
We have $\mu^*(E\cap U)\ge\mu^*V=\mu E$, so $E\in\Cal E$ and
$E\setminus G$
must be negligible; but $V\subseteq E\setminus G$ is not negligible.\
\BanG\ Thus $U\setminus(G\cap Y)$ is negligible for every
$U\in\Cal U$.
(ii) If $W\in\Sigma_Y$ is such that $U\setminus W$ is negligible for
every $U\in\Cal U$, express $W$ as $H\cap Y$ where $H\in\Sigma$. If
$E\in\Cal E$, there is a $U\in\Cal U$ such that $\mu E=\mu^*(E\cap U)$;
now $\mu^*(E\cap U\setminus W)=0$, so
$\mu E=\mu^*(E\cap U\cap W)\le\mu(E\cap H)$ and $E\setminus H$ is
negligible. As $E$ is
arbitrary, $H$ is an essential upper bound for $\Cal E$ and
$G\setminus H$ is negligible; but this means that $G\cap Y\setminus W$
is negligible. As $W$ is arbitrary, $G\cap Y$ is an essential supremum
for $\Cal U$.\ \Qed
As $\Cal U$ is arbitrary, $\mu_Y$ is localizable.
}%end of proof of 214I
\leader{214J}{Upper and
lower \dvrocolon{integrals}}\cmmnt{ The
following elementary facts are sometimes useful.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space,
$A$ a subset of $X$ and $f$ a real-valued function defined almost
everywhere in $X$. Then
(a) if {\it either} $f$ is non-negative {\it or}
$A$ has full outer measure in $X$,
$\overline{\intop}(f\restr A)d\mu_A\le\overline{\intop}fd\mu$;
(b) if $A$ has full outer measure in $X$,
$\underline{\int}fd\mu\le\underline{\int}(f\restr A)d\mu_A$.
\proof{{\bf (a)(i)} Suppose that $f$ is non-negative.
If $\overline{\intop}fd\mu=\infty$, the result is trivial.
Otherwise, there is a $\mu$-integrable function $g$ such that
$f\le g\,\,\mu$-a.e.\ and $\overline{\intop}fd\mu=\int g\,d\mu$, by
133J(a-i). Now $f\restr A\le g\restr A\,\,\mu_A$-a.e., by 214Cb, and
$\int(g\restr A)\,d\mu_A$
is defined and less than or equal to $\int g\,d\mu$, by 214Ea; so
\Centerline{$\overlineint(f\restr A)d\mu_A\le\int(g\restr A)d\mu_A
\le\int g\,d\mu=\overlineint fd\mu$.}
\medskip
\quad{\bf (ii)} Now suppose that $A$ has full outer measure in $X$.
If $g$ is such that $f\le g\,\,\mu$-a.e.\ and $\int g\,d\mu$ is defined in
$[-\infty,\infty]$, then $f\restr A\le g\restr A\,\,\mu_A$-a.e.\ and
$\int(g\restr A)d\mu_A=\int g\,d\mu$, by 214F. So
$\overline{\int}(f\restr A)d\mu_A\le\int g\,d\mu$. As $g$ is arbitrary,
$\overline{\int}(f\restr A)d\mu_A\le\overline{\int}f\,d\mu$.
\medskip
{\bf (b)} Apply (a) to $-f$, and use 133J(b-iv).
}%end of proof of 214J
\leader{214K}{Measurable subspaces: Proposition}
Let $(X,\Sigma,\mu)$ be a measure space.
(a) Let $E\in\Sigma$ and let $\mu_E$ be the subspace measure, with
$\Sigma_E$ its domain. If $(X,\Sigma,\mu)$ is complete, or totally
finite, or $\sigma$-finite, or strictly localizable, or semi-finite, or
localizable, or locally determined, or atomless, or purely atomic, so is
$(E,\Sigma_E,\mu_E)$.
(b) Suppose that $\langle X_i\rangle_{i\in I}$ is a partition of
$X$ into measurable sets\cmmnt{ (not necessarily of finite measure)} such that
\Centerline{$\Sigma=\{E:E\subseteq X,\,
E\cap X_i\in\Sigma$ for every $i\in I\}$,}
\Centerline{$\mu E=\sum_{i\in I}\mu(E\cap X_i)$ for every $E\in\Sigma$.}
\noindent Then $(X,\Sigma,\mu)$ is complete, or strictly localizable, or
semi-finite, or localizable, or locally determined, or atomless, or
purely atomic, iff $(X_i,\Sigma_{X_i},\mu_{X_i})$ has that property for
every
$i\in I$.
\proof{ I really think that if you have read attentively up
to this point, you ought to find this easy. If you are in any doubt,
this makes a very suitable set of sixteen exercises to do.
}%end of proof of 214K
\leader{214L}{Direct sums} Let
$\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$ be any indexed family of
measure spaces. Set
$X=\bigcup_{i\in I}(X_i\times\{i\})$; for $E\subseteq X$, $i\in I$ set
$E_i=\{x:(x,i)\in E\}$. Write
\Centerline{$\Sigma
=\{E:E\subseteq X,\,E_i\in\Sigma_i$ for every $i \in I\}$,}
\Centerline{$\mu E=\sum_{i\in I}\mu_iE_i$ for every $E\in\Sigma$.}
\noindent Then it is easy to check that $(X,\Sigma,\mu)$ is a measure
space; I will call it the {\bf direct sum} of the family
$\familyiI{(X_i,\Sigma_i,\mu_i)}$. Note that if $(X,\Sigma,\mu)$ is
any strictly localizable measure space, with decomposition
$\familyiI{X_i}$,
then we have a natural isomorphism between $(X,\Sigma,\mu)$ and the
direct sum
$(X',\Sigma',\mu')=\bigoplus_{i\in I}(X_i,\Sigma_{X_i},\mu_{X_i})$ of
the subspace measures, if we match $(x,i)\in X'$ with $x\in X$ for every
$i\in I$ and $x\in X_i$.
\cmmnt{For some of the elementary properties (to put
it plainly, I know of no properties which are not elementary) of direct
sums, see 214M and 214Xh-214Xk.}
% 214Xh, 214Xi, 214Xj, 214Xk
\leader{214M}{Proposition}
Let $\familyiI{(X_i,\Sigma_i,\mu_i)}$ be a
family of measure spaces, with direct sum $(X,\Sigma,\mu)$. Let $f$ be
a real-valued function defined on a subset of $X$. For each $i\in I$,
set $f_i(x)=f(x,i)$ whenever $(x,i)\in\dom f$.
(a) $f$ is measurable iff $f_i$ is measurable for every $i\in I$.
(b) If $f$ is non-negative, then
$\int fd\mu=\sum_{i\in I}\int f_id\mu_i$ if either is defined in
$[0,\infty]$.
\proof{{\bf (a)} For $a\in\Bbb R$, set
$F_a=\{(x,i):(x,i)\in\dom f,\,f(x,i)\ge a\}$. (i) If $f$ is
measurable, $i\in I$ and $a\in\Bbb R$, then there is an $E\in\Sigma$
such that $F_a=E\cap\dom f$; now
\Centerline{$\{x:f_i(x)\ge a\}
=\dom f_i\cap\{x:(x,i)\in E\}$}
\noindent belongs to the subspace $\sigma$-algebra on $\dom f_i$ induced
by $\Sigma_i$. As $a$ is arbitrary, $f_i$ is measurable. (ii) If
every $f_i$ is measurable and $a\in\Bbb R$, then for each $i\in I$ there
is an $E_i\in\Sigma_i$ such that $\{x:(x,i)\in F_a\}=E_i\cap\dom f$;
setting $E=\{(x,i):i\in I,\,x\in E_i\}$, $F_a=\dom f\cap E$ belongs to
the subspace $\sigma$-algebra on $\dom f$. As $a$ is arbitrary, $f$ is
measurable.
\medskip
{\bf (b)(i)} Suppose first that $f$ is measurable and defined
everywhere. Set $F_{nk}=\{(x,i):(x,i)\in X,\,f(x,i)\ge 2^{-n}k\}$ for
$k$, $n\in\Bbb N$, $g_n=\sum_{k=1}^{4^n}2^{-n}\chi F_{nk}$ for
$n\in\Bbb N$, $F_{nki}=\{x:(x,i)\in F_{nk}\}$ for $k$, $n\in\Bbb N$ and
$i\in I$, $g_{ni}(x)=g_n(x,i)$ for $i\in I$, $x\in X_i$. Then
$$\eqalign{\int fd\mu
&=\lim_{n\to\infty}\int g_nd\mu
=\sup_{n\in\Bbb N}\sum_{k=1}^{4^n}2^{-n}\mu F_{nk}\cr
&=\sup_{n\in\Bbb N}\sum_{k=1}^{4^n}\sum_{i\in I}2^{-n}\mu F_{nki}
=\sum_{i\in I}\sup_{n\in\Bbb N}\sum_{k=1}^{4^n}2^{-n}\mu F_{nki}\cr
&=\sum_{i\in I}\sup_{n\in\Bbb N}\int g_{ni}d\mu_i
=\sum_{i\in I}\int f_id\mu_i.\cr}$$
\medskip
\quad{\bf (ii)} Generally, if $\int fd\mu$ is defined, there are a
measurable $g:X\to\coint{0,\infty}$ and a conegligible measurable set
$E\subseteq\dom f$ such that $g=f$ on $E$. Now
$E_i=\{x:(x,i)\in X_i\}$ belongs to $\Sigma_i$ for each $i$, and
$\sum_{i\in I}\mu_i(X_i\setminus E_i)=\mu(X\setminus E)=0$, so $E_i$ is
$\mu_i$-conegligible for every $i$. Setting $g_i(x)=g(x,i)$ for
$x\in X_i$, (i) tells us that
\Centerline{$\sum_{i\in I}\int f_id\mu_i
=\sum_{i\in I}\int g_id\mu_i=\int g\,d\mu=\int fd\mu$.}
\medskip
\quad{\bf (iii)} On the other hand, if $\int f_id\mu_i$ is defined for
every $i\in I$, then for each $i\in I$ we can find a measurable function
$g_i:X_i\to\coint{0,\infty}$ and a $\mu_i$-conegligible measurable set
$E_i\subseteq\dom f_i$ such that $g_i=f_i$ on $E_i$. Setting
$g(x,i)=g_i(x)$ for $i\in I$, $x\in X_i$, (a) tells us that $g$ is
measurable, while $g=f$ on $\{(x,i):i\in I,\,x\in E_i\}$, which is
conegligible (by the calculation in (ii) just above); so
\Centerline{$\int fd\mu=\int g\,d\mu
=\sum_{i\in I}\int g_id\mu_i=\sum_{i\in I}\int f_id\mu_i$,}
\noindent again using (i) for the middle step.
}%end of proof of 214M
\leader{214N}{Corollary}
Let $(X,\Sigma,\mu)$ be a measure space with a
decomposition $\familyiI{X_i}$. If $f$ is a real-valued function
defined on a subset of $X$, then
(a) $f$ is measurable iff $f\restr X_i$ is measurable for every
$i\in I$,
(b) if $f\ge 0$, then $\int f=\sum_{i\in I}\int_{X_i}f$ if either is
defined in $[0,\infty]$.
\proof{ Apply 214M to the direct sum of
$\familyiI{(X_i,\Sigma_{X_i},\mu_{X_i})}$, identified with
$(X,\Sigma,\mu)$ as in 214L.
}%end of proof of 214N
\leader{*214O}{}\cmmnt{ I make space here for a general theorem
which puts rather heavy demands on the reader. So I ought to say that I
advise skipping it on first reading. It
will not be quoted in this volume, in
the full form here I do not expect to use it anywhere in this treatise,
only the special case of 214Xm is at all often applied, and the proof
depends on a concept (`ideal of sets') and a technique
(`transfinite induction', part (d) of the proof of 214P) which are
used nowhere else in this volume. However,
`extension of measures' is one of the central themes of Volume 4, and this
result may help to make sense of some of the patterns which will
appear there.
\medskip
\noindent}{\bf Lemma} Let $(X,\Sigma,\mu)$ be a measure space, and $\Cal I$
an ideal of subsets of $X$, that is, a family of subsets of $X$ such that
$\emptyset\in\Cal I$, $I\cup J\in\Cal I$ for all $I$, $J\in\Cal I$, and
$I\in\Cal I$ whenever $I\subseteq J\in\Cal I$. Then there is a measure
$\lambda$ on $X$ such that $\Sigma\cup\Cal I\subseteq\dom\lambda$,
$\mu E=\lambda E+\sup_{I\in\Cal I}\mu^*(E\cap I)$ for every $E\in\Sigma$,
and $\lambda I=0$ for every $I\in\Cal I$.
\proof{{\bf (a)} Let $\Lambda$ be the set of those $F\subseteq X$ such that
there are $E\in\Sigma$ and a countable $\Cal J\subseteq\Cal I$ such that
$E\symmdiff F\subseteq\bigcup\Cal J$. Then $\Lambda$ is a $\sigma$-algebra
of subsets of $X$ including $\Sigma\cup\Cal I$. \Prf\
$\Sigma\subseteq\Lambda$ because
$E\symmdiff E\subseteq\bigcup\emptyset$ for every $E\in\Sigma$. $\Cal
I\subseteq\Lambda$ because $\emptyset\symmdiff I\subseteq\bigcup\{I\}$ for
every $I\in\Cal I$. In particular, $\emptyset\in\Lambda$. If $F\in\Lambda$,
let $E\in\Sigma$ and $\Cal J\subseteq\Cal I$ be such that $\Cal J$ is
countable and $F\symmdiff E\subseteq\bigcup\Cal J$; then
$(X\setminus F)\symmdiff(X\setminus E)\subseteq\bigcup\Cal J$ so
$X\setminus F\in\Lambda$. If $\sequencen{F_n}$ is a sequence in $\Lambda$ with
union $F$, then for each $n\in\Bbb N$ choose $E_n\in\Sigma$,
$\Cal J_n\subseteq\Cal I$ such that $\Cal J_n$ is countable and
$E_n\symmdiff F_n\subseteq\bigcup\Cal J_n$; then
$E=\bigcup_{n\in\Bbb N}E_n$ belongs to $\Sigma$,
$\Cal J=\bigcup_{n\in\Bbb N}\Cal J_n$ is a countable subset of $\Cal I$ and
$E\symmdiff F\subseteq\bigcup\Cal J$, so $F\in\Sigma$. Thus $\Lambda$ is a
$\sigma$-algebra.\ \Qed
\medskip
{\bf (b)} For $F\in\Lambda$ set
\Centerline{$\lambda F=\sup\{\mu E:E\in\Sigma$,
$E\subseteq F$, $\mu^*(E\cap I)=0$ for every $I\in\Cal I\}$.}
\noindent Then $\lambda$ is a measure. \Prf\ The only subset of
$\emptyset$ is $\emptyset$, so $\lambda\emptyset=0$. Let
$\sequencen{F_n}$ be a disjoint sequence in $\Lambda$ with union $F$;
set $u=\sum_{n=0}^{\infty}\lambda F_n$.
(i) If $E\in\Sigma$, $E\subseteq F$ and $\mu^*(E\cap I)=0$ for every
$I\in\Cal I$, then for each $n$ set $E_n=E\cap F_n$. As
$\mu^*(E_n\cap I)=0$ for every $I\in\Cal I$, $\mu E_n\le\lambda F_n$
for each $n$. Now
$\sequencen{E_n}$ is disjoint and has union $E$, so
\Centerline{$\mu E
=\sum_{n=0}^{\infty}\mu E_n\le\sum_{n=0}^{\infty}\lambda F_n=u$.}
\noindent As $E$ is arbitrary,
$\lambda F\le u$. (ii) Take any $\gamma<u$. For $n\in\Bbb N$, set
$\gamma_n=\lambda F_n-2^{-n-1}\min(1,u-\gamma)$ if $\lambda F_n$ is finite,
$\gamma$ otherwise. For each $n$, we
can find an $E_n\in\Sigma$ such that $E_n\subseteq F_n$,
$\mu^*(E_n\cap I)=0$
for every $I\in\Cal I$, and $\mu E_n\ge\gamma_n$. Set
$E=\bigcup_{n\in\Bbb N}E_n$; then $E\subseteq F$ and
$E\cap I=\bigcup_{n\in\Bbb N}E_n\cap I$ is $\mu$-negligible for every
$I\in\Cal I$, so $\lambda F\ge\mu E=\sum_{n=0}^{\infty}\mu E_n\ge\gamma$.
As $\gamma$ is arbitrary, $\lambda F\ge u$. (iii) As
$\sequencen{F_n}$ is arbitrary, $\lambda$ is a measure.\ \Qed
\medskip
{\bf (c)} Now take any $E\in\Sigma$ and set
$u=\sup_{I\in\Cal I}\mu^*(E\cap I)$. If $u=\infty$ then
we certainly have
$\mu E=\infty=\lambda E+u$.
Otherwise, let $\sequencen{I_n}$ be a sequence in $\Cal I$ such that
$\lim_{n\to\infty}\mu^*(E\cap I_n)=u$; replacing $I_n$ by
$\bigcup_{m\le n}I_m$ for each $n$ if necessary, we may suppose that
$\sequencen{I_n}$ is non-decreasing. Set
$A=E\cap\bigcup_{n\in\Bbb N}I_n$; because $E\cap I_n$ has finite outer
measure for each $n$, $A$ can be covered by a sequence of sets of finite
measure, and has a measurable envelope $H$ for $\mu$ included in
$E$ (132Ee). Observe that
\Centerline{$\mu H=\mu^*A=\sup_{n\in\Bbb N}\mu^*(E\cap I_n)=u$}
\noindent by 132Ae.
Set $G=E\setminus H$. Then $\mu^*(G\cap I)=0$ for every $I\in\Cal I$.
\Prf\ For any $n\in\Bbb N$ there is an $F\in\Sigma$
such that $F\supseteq E\cap(I_n\cup I)$ and $\mu F\le u$; in which case
\Centerline{$\mu^*(G\cap I)+\mu^*(E\cap I_n)
\le\mu(F\setminus H)+\mu(F\cap H)\le u$.}
\noindent As $n$ is arbitrary, $\mu^*(G\cap I)=0$.\ \QeD\ Accordingly
\Centerline{$u+\lambda E\ge\mu H+\mu G=\mu E$.}
\noindent On the other hand, if $F\in\Sigma$ is such that $F\subseteq E$
and $\mu^*(F\cap I)=0$ for every $I\in\Cal I$, then
\Centerline{$\mu^*(E\cap I_n)
\le\mu(E\setminus F)+\mu^*(F\cap I_n)=\mu(E\setminus F)$}
\noindent for every $n$, so
\Centerline{$u+\mu F\le\mu(E\setminus F)+\mu F=\mu E$;}
\noindent as $F$ is arbitrary, $u+\lambda E\le\mu E$.
\medskip
{\bf (d)} If $J\in\Cal I$, $F\in\Sigma$, $F\subseteq J$ and
$\mu^*(F\cap I)=0$ for every $I\in\Cal I$, then $F\cap J=F$ is
$\mu$-negligible; as $F$ is arbitrary, $\lambda J=0$.
Thus $\lambda$ has all the required properties.
}%end of proof of 214O
\leader{*214P}{Theorem}
Let $(X,\Sigma,\mu)$ be a measure space, and
$\Cal A$ a family of subsets of $X$ which is well-ordered by the relation
$\subseteq$. Then there is an extension of $\mu$ to a measure $\lambda$
on $X$ such that $\lambda(E\cap A)$ is defined and equal to
$\mu^*(E\cap A)$ whenever $E\in\Sigma$ and $A\in\Cal A$.
\proof{{\bf (a)} Adding $\emptyset$ and $X$ to $\Cal A$ if necessary, we
may suppose that
$\Cal A$ has $\emptyset$ as its least member and $X$ as its greatest
member. By 2A1Dg, $\Cal A$ is isomorphic, as
ordered set, to some ordinal; since $\Cal A$ has a greatest member, this
ordinal is a successor, expressible as $\zeta+1$; let
$\xi\mapsto A_{\xi}:\zeta+1\to\Cal A$ be the order-isomorphism, so that
$\langle A_{\xi}\rangle_{\xi\le\zeta}$ is a non-decreasing family of
subsets of $X$, $A_0=\emptyset$ and $A_{\zeta}=X$.
\medskip
{\bf (b)} For each ordinal $\xi\le\zeta$, write $\mu_{\xi}$ for
the subspace measure on $A_{\xi}$, $\Sigma_{\xi}$ for its domain
and $\Cal I_{\xi}$ for $\bigcup_{\eta<\xi}\Cal PA_{\eta}$.
Because $A_{\eta}\cup A_{\eta'}=A_{\max(\eta,\eta')}$ for $\eta$,
$\eta'<\xi$, $\Cal I_{\xi}$ is an ideal of subsets of $A_{\xi}$.
By 214O, we have a measure $\lambda_{\xi}$ on $A_{\xi}$, with domain
$\Lambda_{\xi}\supseteq\Sigma_{\xi}\cup\Cal I_{\xi}$, such that
$\mu_{\xi}E=\lambda_{\xi}E+\sup_{I\in\Cal I_{\xi}}\mu_{\xi}^*(E\cap I)$
for every $E\in\Sigma_{\xi}$ and $\lambda_{\xi}I=0$ for every
$I\in\Cal I_{\xi}$. Because every member of $\Cal I_{\xi}$ is
included in $A_{\eta}$ for some $\eta<\xi$, we have
\Centerline{$\mu^*(E\cap A_{\xi})
=\lambda_{\xi}(E\cap A_{\xi})+\sup_{\eta<\xi}\mu_{\xi}^*(E\cap A_{\eta})
=\lambda_{\xi}(E\cap A_{\xi})+\sup_{\eta<\xi}\mu^*(E\cap A_{\eta})$}
\noindent (214Cd) for every $E\in\Sigma$. Also, of course,
$\lambda_{\xi}A_{\eta}=0$ for every $\eta<\xi$.
\medskip
{\bf (c)} Now set
\Centerline{$\Lambda=\{F:F\subseteq X$, $F\cap A_{\xi}\in\Lambda_{\xi}$ for
every $\xi\le\zeta\}$,}
\Centerline{$\lambda F=\sum_{\xi\le\zeta}\lambda_{\xi}(F\cap A_{\xi})$}
\noindent for every $F\in\Lambda$. Because $\Lambda_{\xi}$ is a
$\sigma$-algebra of subsets of $A_{\xi}$ for each $\xi$, $\Lambda$ is a
$\sigma$-algebra of subsets of $X$; because every $\lambda_{\xi}$ is a
measure, so is $\lambda$. If $E\in\Sigma$, then
\Centerline{$E\cap A_{\xi}\in\Sigma_{\xi}\subseteq\Lambda_{\xi}$}
\noindent for each $\xi$, so $E\in\Lambda$. If $\eta\le\zeta$, then for
each $\xi\le\zeta$ either $\eta<\xi$ and