forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt225.tex
1130 lines (866 loc) · 41.5 KB
/
mt225.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt225.tex}
\versiondate{16.8.15}
\copyrightdate{1996}
\def\chaptername{The Fundamental Theorem of Calculus}
\def\sectionname{Absolutely continuous functions}
\newsection{225}
We are now ready for a full characterization of the functions that can
appear as indefinite integrals (225E, 225Xf). The essential idea
is that of `absolute continuity' (225B). In the second half of the
section (225G-225N) I describe some of the relationships between
this concept and those we have already seen.
\leader{225A}{Absolute continuity of the
indefinite \dvrocolon{integral}}\cmmnt{ I
begin with an easy fundamental result from general measure theory.
\medskip
\noindent}{\bf Theorem} Let
$(X,\Sigma,\mu)$ be any measure space and $f$ an integrable real-valued
function defined on a conegligible subset of $X$.
Then for any $\epsilon>0$ there are a measurable set
$E$ of finite measure and a real number
$\delta>0$ such that $\int_F|f|\le\epsilon$ whenever $F\in\Sigma$ and
$\mu(F\cap E)\le\delta$.
\proof{ There is a non-decreasing sequence $\sequencen{g_n}$ of
non-negative simple functions such that $|f|\eae\lim_{n\to\infty}g_n$
and $\int|f|=\lim_{n\to\infty}\int g_n$. Take $n\in\Bbb N$ such that
$\int g_n\ge\int|f|-\bover12\epsilon$.
Let $M>0$, $E\in\Sigma$ be such that $\mu E<\infty$ and
$g_n\le M\chi E$; set $\delta=\epsilon/2M$.
If $F\in\Sigma$ and $\mu(F\cap E)\le\delta$, then
\Centerline{$\int_Fg_n=\int g_n\times\chi F
\le M\mu(F\cap E)\le\Bover12\epsilon$;}
\noindent consequently
\Centerline{$\int_F|f|
=\int_Fg_n+\int_F|f|-g_n\le\Bover12\epsilon+\int|f|-g_n\le\epsilon$.}
}%end of proof of 225A
\leader{225B}{Absolutely continuous functions on $\Bbb R$: Definition}
If $[a,b]$ is a non-empty
closed interval in $\Bbb R$ and $f:[a,b]\to\Bbb R$ is a function, we say
that $f$ is {\bf absolutely continuous} if for every $\epsilon>0$ there
is a $\delta>0$ such that $\sum_{i=1}^n|f(b_i)-f(a_i)|\le\epsilon$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$.
\cmmnt{\medskip
\noindent{\bf Remark} The phrase `absolutely continuous' is used in
various senses in measure theory, closely related (if you look at them
in the right way) but not identical; you will need to keep the context
of each definition in clear focus.
}%end of comment
\leader{225C}{Proposition} Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$.
(a) If $f:[a,b]\to\Bbb R$ is absolutely continuous, it is uniformly
continuous.
(b) If $f:[a,b]\to\Bbb R$ is absolutely continuous it is of bounded
variation on $[a,b]$, so is differentiable almost everywhere in $[a,b]$,
and its derivative is integrable over $[a,b]$.
(c) If $f$, $g:[a,b]\to\Bbb R$ are absolutely continuous, so are
$f+g$ and $cf$, for every $c\in\Bbb R$.
(d) If $f$, $g:[a,b]\to\Bbb R$ are absolutely continuous so is $f\times
g$.
(e) If $g:[a,b]\to [c,d]$ and $f:[c,d]\to\Bbb R$ are absolutely
continuous, and $g$ is non-decreasing, then the composition
$fg:[a,b]\to\Bbb R$ is absolutely continuous.
\proof{{\bf (a)} Let $\epsilon>0$. Then there is a $\delta>0$ such
that $\sum_{i=1}^n|f(b_i)-f(a_i)|\le\epsilon$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$; but of course now
$|f(y)-f(x)|\le\epsilon$ whenever $x$, $y\in[a,b]$ and
$|x-y|\le\delta$. As $\epsilon$ is arbitrary, $f$ is uniformly
continuous.
\medskip
{\bf (b)} Let $\delta>0$ be such that
$\sum_{i=1}^n|f(b_i)-f(a_i)|\le 1$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. If
$a\le c=c_0\le c_1\le\ldots\le c_n\le d\le\min(b,c+\delta)$, then
$\sum_{i=1}^n|f(c_i)-f(c_{i-1})|\le 1$, so $\Var_{[c,d]}(f)\le 1$;
accordingly (inducing on $k$, using
224Cc for the inductive step) $\Var_{[a,\min(a+k\delta,b)]}(f)\le k$
for every $k$, and
\Centerline{$\Var_{[a,b]}(f)\le\lceil(b-a)/\delta\rceil<\infty$.}
It follows that $f'$ is integrable, by 224I.
\medskip
{\bf (c)(i)} Let $\epsilon>0$. Then there are $\delta_1$,
$\delta_2>0$ such that
\Centerline{$\sum_{i=1}^n|f(b_i)-f(a_i)|\le\Bover12\epsilon$}
\noindent whenever
$a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta_1$,
\Centerline{$\sum_{i=1}^n|g(b_i)-g(a_i)|\le\Bover12\epsilon$}
\noindent whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le
b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta_2$. Set
$\delta=\min(\delta_1,\delta_2)>0$,
and suppose that $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le
b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. Then
\Centerline{$\sum_{i=1}^n|(f+g)(b_i)-(f+g)(a_i)|\le
\sum_{i=1}^n|f(b_i)-f(a_i)|+\sum_{i=1}^n|g(b_i)-g(a_i)|\le\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $f+g$ is absolutely
continuous.
\medskip
\quad{\bf (ii)} Let $\epsilon>0$. Then there is a
$\delta>0$ such that
\Centerline{$\sum_{i=1}^n|f(b_i)-f(a_i)|\le\Bover{\epsilon}{1+|c|}$}
\noindent whenever
$a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. Now
\Centerline{$\sum_{i=1}^n|(cf)(b_i)-(cf)(a_i)|\le\epsilon$}
\noindent whenever
$a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. As $\epsilon$ is arbitrary, $cf$ is
absolutely continuous.
\medskip
{\bf (d)} By either (a) or (b), $f$ and $g$ are bounded; set
$M=\sup_{x\in[a,b]}|f(x)|$, $M'=\sup_{x\in[a,b]}|g(x)|$. Let
$\epsilon>0$. Then there are $\delta_1$, $\delta_2>0$ such that
\inset{$\sum_{i=1}^n|f(b_i)-f(a_i)|\le\epsilon$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta_1$,}
\inset{$\sum_{i=1}^n|g(b_i)-g(a_i)|\le\epsilon$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta_2$.}
\noindent Set $\delta=\min(\delta_1,\delta_2)>0$ and suppose that $a\le
a_1\le b_1\le\ldots\le b_n\le b$ and $\sum_{i=1}^nb_i-a_i\le\delta$.
Then
$$\eqalign{\sum_{i=1}^n|f(b_i)g(b_i)-f(a_i)g(a_i)|
&=\sum_{i=1}^n|(f(b_i)-f(a_i))g(b_i)+f(a_i)(g(b_i)-g(a_i))|\cr
&\le\sum_{i=1}^n|f(b_i)-f(a_i)||g(b_i)|+|f(a_i)||g(b_i)-g(a_i)|\cr
&\le\sum_{i=1}^n|f(b_i)-f(a_i)|M'+M|g(b_i)-g(a_i)|\cr
&\le\epsilon M'+M\epsilon
=\epsilon(M+M').\cr}$$
\noindent As $\epsilon$ is arbitrary, $f\times g$ is absolutely
continuous.
\medskip
{\bf (e)} Let $\epsilon>0$. Then there is a $\delta>0$ such that
$\sum_{i=1}^n|f(d_i)-f(c_i)|\le\epsilon$ whenever $c\le c_1\le
d_1\le\ldots\le c_n\le d_n\le d$ and $\sum_{i=1}^nd_i-c_i\le\delta$;
and there is an $\eta>0$ such that
$\sum_{i=1}^n|g(b_i)-g(a_i)|\le\delta$ whenever $a\le a_1\le
b_1\le\ldots\le a_n\le b_n\le b$ and $\sum_{i=1}^nb_i-a_i\le\eta$. Now
suppose that $a\le a_1\le b_1\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\eta$. Because $g$ is non-decreasing, we have
$c\le g(a_1)\le\ldots\le g(b_n)\le d$ and
$\sum_{i=1}^ng(b_i)-g(a_i)\le\delta$, so $\sum_{i=1}^n|f(g(b_i))
-f(g(a_i))|\le\epsilon$; as $\epsilon$ is arbitrary, $fg$ is absolutely
continuous.
}%end of proof of 225C
\leader{225D}{Lemma} Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$ and $f:[a,b]\to\Bbb R$ an absolutely continuous function which
has zero derivative almost everywhere in $[a,b]$.
Then $f$ is constant on $[a,b]$.
\proof{ Let $x\in[a,b]$, $\epsilon>0$. Let $\delta>0$ be
such that $\sum_{i=1}^n|f(b_i)-f(a_i)|\le\epsilon$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. Set $A=\{t:a<t<x,\,f'(t)$ exists
$=0\}$; then $\mu A=x-a$, writing $\mu$ for Lebesgue measure.
Let $\Cal I$ be the set of non-empty non-singleton closed intervals
$[c,d]\subseteq[a,x]$ such that $|f(d)-f(c)|\le\epsilon (d-c)$; then
every member of $A$ belongs to arbitrarily short members of $\Cal I$.
By Vitali's theorem (221A), there is a countable disjoint family
$\Cal I_0\subseteq\Cal I$ such that $\mu(A\setminus\bigcup\Cal I_0)=0$,
that is,
\Centerline{$x-a=\mu(\bigcup\Cal I_0)=\sum_{I\in\Cal I_0}\mu I$.}
\noindent Now there is a finite $\Cal I_1\subseteq\Cal I_0$ such that
\Centerline{$\mu(\bigcup\Cal I_1)
=\sum_{I\in\Cal I_1}\mu I\ge x-a-\delta$.}
\noindent If $\Cal I_1=\emptyset$, then $x\le a+\delta$ and
$|f(x)-f(a)|\le\epsilon$. Otherwise, express $\Cal I_1$ as
$\{[c_0,d_0],\ldots,[c_n,d_n]\}$, where
$a\le c_0<d_0<c_1<d_1<\ldots<c_n<d_n\le x$. Then
\Centerline{$(c_0-a)+\sum_{i=1}^n(c_i-d_{i-1})
+(x-d_n)=\mu([a,x]\setminus\bigcup\Cal I_1)\le\delta$,}
\noindent so
\Centerline{$|f(c_0)-f(a)|+\sum_{i=1}^n|f(c_i)-f(d_{i-1})|+|f(x)-f(d_n)|
\le\epsilon$.}
\noindent On the other hand, $|f(d_i)-f(c_i)|\le\epsilon(d_i-c_i)$ for
each $i$, so
\Centerline{$\sum_{i=0}^n|f(d_i)-f(c_i)|\le\epsilon\sum_{i=0}^nd_i-c_i
\le\epsilon(x-a)$.}
\noindent Putting these together,
$$\eqalign{|f(x)-f(a)|
&\le|f(c_0)-f(a)|+|f(d_0)-f(c_0)|+|f(c_1)-f(d_0)|+\ldots\cr
&\hskip10em+|f(d_n)-f(c_n)|+|f(x)-f(d_n)|\cr
&=|f(c_0)-f(a)|+\sum_{i=1}^n|f(c_i)-f(d_{i-1})|\cr
&\hskip10em+|f(x)-f(d_n)|+\sum_{i=0}^n|f(d_i)-f(c_i)|\cr
&\le\epsilon+\epsilon(x-a)
=\epsilon(1+x-a).\cr}$$
\noindent As $\epsilon$ is arbitrary, $f(x)=f(a)$. As $x$ is
arbitrary, $f$ is constant.
}%end of proof of 225D
\leader{225E}{Theorem} Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$ and $F:[a,b]\to\Bbb R$ a function. Then the following are
equiveridical:
(i) there is an integrable real-valued function $f$ such that
$F(x)=F(a)+\int_a^xf$ for every $x\in[a,b]$;
(ii) $\int_a^xF'$ exists and is
equal to $F(x)-F(a)$ for every $x\in[a,b]$;
(iii) $F$ is absolutely continuous.
\cmmnt{\medskip
\noindent{\bf Remark} Here, and for the rest of the section (except in
225Oa), integrals will
be taken with respect to Lebesgue measure on $\Bbb R$.
}
\proof{{\bf (i)$\Rightarrow$(iii)} Assume (i).
Let $\epsilon>0$. By 225A, there is a
$\delta>0$ such that $\int_H|f|\le\epsilon$ whenever $H\subseteq[a,b]$
and $\mu H\le\delta$, writing $\mu$ for Lebesgue measure as usual. Now
suppose that $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$
and $\sum_{i=1}^nb_i-a_i\le\delta$. Consider $H=\bigcup_{1\le i\le
n}\coint{a_i,b_i}$. Then $\mu H\le\delta$ and
\Centerline{$\sum_{i=1}^n|F(b_i)-F(a_i)|
=\sum_{i=1}^n|\int_{\coint{a_i,b_i}}f|
\le\sum_{i=1}^n\int_{\coint{a_i,b_i}}|f|
=\int_F|f|\le\epsilon$.}
\noindent As
$\epsilon$ is arbitrary, $F$ is absolutely continuous.
\medskip
{\bf (iii)$\Rightarrow$(ii)} If $F$ is absolutely continuous, then it is
of bounded variation (225Cb), so $\int_a^bF'$ exists (224I). Set
$G(x)=\int_a^xF'$ for $x\in [a,b]$;
then $G'\eae F'$ (222E) and $G$ is absolutely continuous (by
(i)$\Rightarrow$(iii) just proved). Accordingly $G-F$ is absolutely
continuous (225Cc) and is differentiable, with zero derivative, almost
everywhere. It follows that $G-F$ must be constant (225D). But as
$G(a)=0$, $G=F-F(a)$; just as required by (ii).
\medskip
{\bf (ii)$\Rightarrow$(i)} is trivial.
}%end of proof of 225E
\leader{225F}{Integration by \dvrocolon{parts}}\cmmnt{ As an
application of this
result, I give a justification of a familiar formula.
\medskip
\noindent}{\bf Theorem} Let $f$ be a real-valued function which is
integrable over
an interval $[a,b]\subseteq\Bbb R$, and $g:[a,b]\to\Bbb R$ an absolutely
continuous function. Suppose that $F$ is an indefinite integral of
$f$, so that $F(x)-F(a)=\int_a^xf$ for $x\in[a,b]$. Then
\Centerline{$\int_a^bf\times g
=F(b)g(b) - F(a)g(a) -\int_a^bF\times g'$.}
\proof{ Set $h=F\times g$. Because $F$ is absolutely continuous
(225E), so is $h$ (225Cd). Consequently
$h(b)-h(a)=\int_a^bh'$, by (iii)$\Rightarrow$(ii) of 225E. But
$h'=F'\times g+F\times g'$ wherever $F'$ and $g'$ are defined, which is
almost everywhere, and $F'\eae f$, by 222E again; so
$h'\eae f\times g+F\times g'$. Finally, $g$ and $F$ are continuous, therefore measurable,
and bounded, while $f$ and $g'$ are integrable (using 225E yet again),
so $f\times g$ and $F\times g'$ are integrable, and
\Centerline{$F(b)g(b)-F(a)g(a)
=h(b)-h(a)
=\int_a^bh'
=\int_a^bf\times g+\int_a^bF\times g'$,}
\noindent as required.
}%end of proof of 225F
\leader{225G}{}\cmmnt{ I come now to a group of results at a rather
deeper level than most of the work of this chapter, being closer to the
ideas of Chapter 26.
\medskip
\noindent}{\bf Proposition} Let $[a,b]$ be a non-empty closed interval
in $\Bbb R$ and $f:[a,b]\to\Bbb R$ an absolutely continuous function.
(a) $f[A]$ is negligible for every negligible set $A\subseteq\Bbb R$.
(b)\dvAnew{2013}
$f[E]$ is measurable for every measurable set $E\subseteq\Bbb R$.
\proof{{\bf (a)} Let $\epsilon>0$. Then there is a $\delta>0$ such that
$\sum_{i=1}^n|f(b_i)-f(a_i)|\le\epsilon$ whenever
$a\le a_1\le b_1\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. Now
there is a sequence $\sequence{k}{I_k}$ of closed intervals, covering
$A$, with $\sum_{k=0}^{\infty}\mu I_k\le\delta$. For each
$m\in\Bbb N$, let $F_m$ be $[a,b]\cap\bigcup_{k\le m}I_k$. Then
$\mu f[F_m]\le\epsilon$. \Prf\ $F_m$ must be expressible as
$\bigcup_{i\le n}[c_i,d_i]$ where $n\le m$ and
$a\le c_0\le d_0\le\ldots\le c_n\le d_n\le b$.
For each $i\le n$ choose $x_i$, $y_i$ such that
$c_i\le x_i$, $y_i\le d_i$ and
\Centerline{$f(x_i)=\min_{x\in[c_i,d_i]}f(x)$,\quad
$f(y_i)=\max_{x\in[c_i,d_i]}f(x)$;}
\noindent such exist because $f$ is continuous (225Ca), so is bounded and
attains its bounds on $[c_i,d_i]$. Set $a_i=\min(x_i,y_i)$,
$b_i=\max(x_i,y_i)$, so that $c_i\le a_i\le b_i\le d_i$. Then
\Centerline{$\sum_{i=0}^nb_i-a_i\le\sum_{i=0}^nd_i-c_i=\mu F_m
\le\mu(\bigcup_{k\in\Bbb N}I_k)\le\delta$,}
\noindent so
$$\eqalign{\mu f[F_m]
&=\mu(\bigcup_{i\le m}f[\,[c_i,d_i]\,])
\le\sum_{i=0}^n\mu(f[\,[c_i,d_i]\,])\cr
&=\sum_{i=0}^n\mu[f(x_i),f(y_i)]
=\sum_{i=0}^n|f(b_i)-f(a_i)|
\le\epsilon. \text{ \Qed}\cr}$$
\noindent But $\sequence{m}{f[F_m]}$ is a non-decreasing sequence
covering $f[A]$, so
\Centerline{$\mu^*f[A]\le\mu(\bigcup_{m\in\Bbb N}f[F_m])
=\sup_{m\in\Bbb N}\mu f[F_m]\le\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $f[A]$ is negligible, as claimed.
\medskip
{\bf (b)} By 134Fb, there is a sequence $\sequencen{F_n}$ of closed subsets
of $E\cap[a,b]$ such that $\lim_{n\to\infty}\mu F_n=\mu(E\cap[a,b])$.
For each $n$, $F_n$ is closed and bounded, therefore compact (2A2F); as
$f$ is continuous, $f[F_n]$ is compact (2A2Eb), therefore closed
(2A2F, in the other direction) and measurable (114G). Next,
setting $A=E\cap[a,b]\setminus\bigcup_{n\in\Bbb N}F_n$,
$A$ is negligible, so $f[A]$ is negligible, by (a) here,
therefore measurable. Consequently
\Centerline{$f[E]=f[E\cap[a,b]]=f[\bigcup_{n\in\Bbb N}F_n\cup A]
=\bigcup_{n\in\Bbb N}f[F_n]\cup f[A]$}
\noindent is measurable, as claimed.
}%end of proof of 225G
\leader{225H}{Semi-continuous functions}\cmmnt{ In preparation for the
last main result of this section, I give a general result concerning
measurable real-valued functions on subsets of $\Bbb R$. It will be
convenient here, for once, to consider functions taking values in
$[-\infty,\infty]$.} If $D\subseteq\BbbR^r$, a function
$g:D\to[-\infty,\infty]$ is {\bf lower
semi-continuous} if $\{x:g(x)>u\}$ is an open subset of
$D$\cmmnt{ (for the subspace topology, see 2A3C)} for
every $u\in[-\infty,\infty]$. Any lower semi-continuous function is
Borel measurable, therefore Lebesgue
measurable\cmmnt{ (121B-121D)}. %121B 121C 121D
\cmmnt{Now we have the following result.}
\leader{225I}{Proposition} Suppose that $r\ge 1$ and that $f$ is a
real-valued function, defined on
a subset $D$ of $\BbbR^r$, which is integrable over $D$. Then for
any $\epsilon>0$ there is a lower semi-continuous function
$g:\BbbR^r\to[-\infty,\infty]$ such that $g(x)\ge f(x)$ for every
$x\in D$ and $\int_Dg$ is defined and not greater than
$\epsilon+\int_Df$.
\cmmnt{\medskip
\noindent{\bf Remarks} This is a result of great general importance, so
I give it in a fairly general form; but for the present chapter all we
need is the case $r=1$, $D=[a,b]$ where $a\le b$.
}%end of comment
\proof{{\bf (a)} We can enumerate $\Bbb Q$ as $\sequencen{q_n}$. By
225A, there is a $\delta>0$ such that $\int_F|f|\le\bover12{\epsilon}$
whenever $\mu_DF\le\delta$, where $\mu_D$ is the subspace measure on
$D$, so that $\mu_DF=\mu^*F$, the outer Lebesgue measure of $F$, for
every $F\in\Sigma_D$, the domain of $\mu_D$ (214A-214B). For each
$n\in\Bbb N$, set
\Centerline{$\delta_n=2^{-n-1}\min(\Bover{\epsilon}{1+2|q_n|},\delta)$,}
\noindent so that
$\sum_{n=0}^{\infty}\delta_n|q_n|\le\bover12{\epsilon}$ and
$\sum_{n=0}^{\infty}\delta_n\le\delta$. For each $n\in\Bbb N$, let
$E_n\subseteq\BbbR^r$ be a Lebesgue measurable set such that
$\{x:f(x)\ge q_n\}=D\cap E_n$, and choose an open set
$G_n\supseteq E_n\cap B(\tbf{0},n)$ such that
$\mu G_n\le\mu(E_n\cap B(\tbf{0},n))+\delta_n$ (134Fa), writing
$B(\tbf{0},n)$ for the ball
$\{x:\|x\|\le n\}$. For $x\in\BbbR^r$, set
\Centerline{$g(x)=\sup\{q_n:x\in G_n\}$,}
\noindent allowing $-\infty$ as $\sup\emptyset$ and $\infty$ as the
supremum of a set with no upper bound in $\Bbb R$.
\medskip
{\bf (b)} Now check the properties of $g$.
\medskip
\quad{\bf (i)} $g$ is lower semi-continuous. \Prf\ If
$u\in[-\infty,\infty]$, then
\Centerline{$\{x:g(x)>u\}=\bigcup\{G_n:q_n>u\}$}
\noindent is a union of open sets, therefore open.\ \Qed
\medskip
\quad{\bf (ii)} $g(x)\ge f(x)$ for every $x\in D$. \Prf\ If
$x\in D$ and $\eta>0$, there is an $n\in\Bbb N$ such that
$\|x\|\le n$ and $f(x)-\eta\le q_n\le f(x)$; now
$x\in E_n\subseteq G_n$
so $g(x)\ge q_n\ge f(x)-\eta$. As $\eta$ is arbitrary,
$g(x)\ge f(x)$.\ \Qed
\medskip
\quad{\bf (iii)} Consider the functions
$h_1$, $h_2:D\to\ocint{-\infty,\infty}$ defined by setting
$$\eqalign{h_1(x)
&=|f(x)|\text{ if }x\in D\cap\bigcup_{n\in\Bbb N}(G_n\setminus E_n),\cr
&=0\text{ for other }x\in D,\cr
h_2(x)&=\sum_{n=0}^{\infty}|q_n|\chi(G_n\setminus E_n)(x)
\text{ for every }x\in D.\cr}$$
\noindent Setting $F=\bigcup_{n\in\Bbb N}G_n\setminus E_n$,
\Centerline{$\mu F\le\sum_{n=0}^{\infty}\mu(G_n\setminus E_n)
\le\delta$,}
\noindent so
\Centerline{$\int_Dh_1
=\int_{D\cap F}|f|\le\Bover12\epsilon$}
\noindent by the choice of $\delta$. As for $h_2$, we have
(by B.Levi's theorem)
\Centerline{$\int_Dh_2
=\sum_{n=0}^{\infty}|q_n|\mu_D(D\cap G_n\setminus F_n)
\le\sum_{n=0}^{\infty}|q_n|\mu(G_n\setminus F_n)
\le\Bover12\epsilon$}
\noindent -- because this is finite, $h_2(x)<\infty$ for almost every
$x\in D$. Thus $\int_Dh_1+h_2\le\epsilon$.
\medskip
\quad{\bf (iv)} The point is that $g\le f+h_1+h_2$ everywhere in
$D$. \Prf\ Take any $x\in D$. If $n\in\Bbb N$
and $x\in G_n$, then either $x\in E_n$, in which case
\Centerline{$f(x)+h_1(x)+h_2(x)\ge f(x)\ge q_n$,}
\noindent or $x\in G_n\setminus E_n$, in which case
\Centerline{$f(x)+h_1(x)+h_2(x)\ge f(x)+|f(x)|+|q_n|\ge q_n$.}
\noindent Thus
\Centerline{$f(x)+h_1(x)+h_2(x)\ge\sup\{q_n:x\in G_n\}\ge g(x)$. \Qed}
\noindent So $g\le f+h_1+h_2$ everywhere in $D$.
\medskip
\quad{\bf (v)} Putting (iii) and (iv) together,
\Centerline{$\int_Dg\le\int_Df+h_1+h_2\le\epsilon+\int_Df$,}
\noindent as required.
}%end of proof of 225I
\leader{225J}{}\cmmnt{ We need some results on Borel measurable sets
and functions which are of independent interest.
\medskip
\noindent}{\bf Theorem} Let $D$ be a subset of $\Bbb R$ and
$f:D\to\Bbb R$ any function. Then
\Centerline{$E=\{x:x\in D,\,f$ is continuous at $x\}$}
\noindent is relatively Borel measurable in $D$, and
\Centerline{$F=\{x:x\in D,\,f$ is differentiable at $x\}$}
\noindent is Borel measurable in $\Bbb R$; moreover, $f':F\to\Bbb R$ is
Borel measurable.
\wheader{225J}{0}{0}{0}{36pt}
\proof{{\bf (a)} For $k\in\Bbb N$ set
\Centerline{$\Cal G_k=\{\ooint{a,b}:a,\,b\in\Bbb R,\,
|f(x)-f(y)|\le 2^{-k}$ for all $x$, $y\in D\cap\ooint{a,b}\}$.}
\noindent Then $G_k=\bigcup\Cal G_k$ is an open set, so
$E_0=\bigcap_{k\in\Bbb N}G_k$ is a Borel set. But $E=D\cap E_0$, so
$E$ is a relatively Borel subset of $D$.
\medskip
{\bf (b)(i)} I should perhaps say at once that when interpreting the
formula $f'(x)=\lim_{h\to 0}(f(x+h)-f(x))/h$, I insist on the
restrictive definition
\Centerline{$a=\lim_{h\to 0}\bover{f(x+h)-f(x)}{h}$}
\noindent if
\qquad\quad for every $\epsilon>0$ there is a $\delta>0$ such that
$\Bover{f(x+h)-f(x)}{h}$ is defined and
\hfill$|\Bover{f(x+h)-f(x)}{h}-a|\le\epsilon$ whenever
$0<|h|\le\delta$.\qquad\qquad\quad
\noindent So $f'(x)$ can be defined only if there is some $\delta>0$
such that the whole interval $[x-\delta,x+\delta]$ lies within the
domain $D$ of $f$.
\medskip
\quad{\bf (ii)} For $p$, $q$, $q'\in\Bbb Q$ and $k\in\Bbb N$ set
$$\eqalign{H(k,p,q,q')
&=\{x:x\in E\cap\ooint{q,q'},\,|f(y)-f(x)-p(y-x)|\le 2^{-k}|y-x|
\text{ for every }y\in\ooint{q,q'}\}\cr&
\mskip300mu\text{ if }\ooint{q,q'}\subseteq D\cr
&=\emptyset\text{ otherwise}.\cr}$$
%display works in smallprint version
\noindent Then
$H(k,p,q,q')=E\cap\ooint{q,q'}\cap\overline{H(k,p,q,q')}$. \Prf\ If
$x\in E\cap\ooint{q,q'}\cap\overline{H(k,p,q,q')}$ there is a sequence
$\sequencen{x_n}$ in $H(k,p,q,q')$ converging to $x$.
Because $f$ is continuous at $x$,
$$\eqalign{|f(y)-f(x)-p(y-x)|
&=\lim_{n\to\infty}|f(y)-f(x_n)-p(y-x_n)|\cr&
\le 2^{-k}\lim_{n\to\infty}2^{-k}|y-x_n|
=2^{-k}|y-x|\cr}$$
\noindent for every $y\in\ooint{q,q'}$, so that
$x\in H(k,p,q,q')$.\ \QeD\ Consequently $H(k,p,q,q')$ is a Borel set.
\Prf\ There is a Borel set $E_0$ such that $E=E_0\cap D$, by (a), so that
if $\ooint{q,q'}\subseteq D$ then
\Centerline{$H(k,p,q,q')=E\cap\ooint{q,q'}\cap\overline{H(k,p,q,q')}
=E_0\cap\ooint{q,q'}\cap\overline{H(k,p,q,q')}$}
\noindent is Borel. Otherwise, of course, $H(k,p,q,q')$ is Borel because
it is empty.\ \Qed
\medskip
\quad{\bf (iii)} Now
\Centerline{$F
=\bigcap_{k\in\Bbb N}\bigcup_{p,q,q'\in\Bbb Q}H(k,p,q,q')$.}
\noindent \Prf\ ($\alpha$) Suppose $x\in F$, that is, $f'(x)$ is
defined; say $f'(x)=a$. Take any $k\in\Bbb N$. Then there are
$p\in\Bbb Q$, $\delta>0$ such that
$|p-a|\le 2^{-k-1}$ and $[x-\delta,x+\delta]\subseteq D$ and
$|\bover{f(x+h)-f(x)}{h}-a|\le 2^{-k-1}$ whenever $0<|h|\le\delta$;
now take
$q\in\Bbb Q\cap\coint{x-\delta,x}$, $q'\in\Bbb Q\cap\ocint{x,x+\delta}$
and see that $x\in H(k,p,q,q')$. As $x$ is arbitrary,
$F\subseteq\bigcap_{k\in\Bbb N}\bigcup_{p,q,q'\in\Bbb Q}H(k,p,q,q')$.
($\beta$) If
$x\in\bigcap_{k\in\Bbb N}\bigcup_{p,q,q'\in\Bbb Q}H(k,p,q,q')$, then for
each $k\in\Bbb N$ choose $p_k$, $q_k$,
$q'_k\in\Bbb Q$ such that $x\in H(k,p_k,q_k,q'_k)$. If $h\ne 0$,
$x+h\in\ooint{q_k,q'_k}$ then $|\bover{f(x+h)-f(x)}{h}-p_k|\le 2^{-k}$.
But this means, first, that $|p_k-p_l|\le 2^{-k}+2^{-l}$ for every $k$,
$l$ (since surely there is some $h\ne 0$ such that
$x+h\in\ooint{q_k,q'_k}\cap\ooint{q_l,q'_l}$), so that
$\sequence{k}{p_k}$ is a Cauchy sequence, with limit $a$ say; and,
second, that $|\bover{f(x+h)-f(x)}{h}-a|\le 2^{-k}+|a-p_k|$ whenever
$h\ne 0$ and $x+h\in\ooint{q_k,q'_k}$, so that $f'(x)$ is defined and
equal to $a$.\ \Qed
\medskip
\quad{\bf (iv)} Because $\Bbb Q$ is countable, all the unions
$\bigcup_{p,q,q'\in\Bbb Q}H(k,p,q,q')$ are Borel sets, so $F$ also is.
\medskip
\quad{\bf (v)} Now enumerate $\BbbQ^3$ as
$\sequence{i}{(p_i,q_i,q'_i)}$, and set
$H'_{ki}=H(k,p_i,q_i,q'_i)\setminus\bigcup_{j<i}H(k,p_j,q_j,q'_j)$ for
each $k$, $i\in\Bbb N$. Every $H'_{ki}$ is Borel measurable,
$\sequence{i}{H'_{ki}}$ is disjoint, and
\Centerline{$\bigcup_{i\in\Bbb N}H'_{ki}
=\bigcup_{i\in\Bbb N}H(k,p_i,q_i,q'_i)\supseteq F$}
\noindent for each $k$. Note that
$|f'(x)-p|\le 2^{-k}$ whenever $x\in F\cap H(k,p,q,q')$, so if we set
$f_k(x)=p_i$ for every $x\in H'_{ki}$ we shall have a Borel
measurable function
$f_k$ such that $|f(x)-f_k(x)|\le 2^{-k}$ for every $x\in F$.
Accordingly $f'=\lim_{k\to\infty}f_k\restr F$ is Borel measurable.
}%end of proof of 225J
\leader{225K}{Proposition} Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$, and $f:[a,b]\to\Bbb R$ a function. Set
$F=\{x:x\in\ooint{a,b},\,f'(x)$ is defined$\}$. Then $f$ is absolutely
continuous iff (i) $f$ is continuous (ii) $f'$ is integrable over $F$
(iii) $f[\,[a,b]\setminus F]$ is negligible.
\proof{{\bf (a)} Suppose first that $f$ is absolutely continuous. Then
$f$ is surely continuous (225Ca) and $f'$ is integrable over $[a,b]$,
therefore over $F$ (225E); also $[a,b]\setminus F$ is negligible, so
$f[\,[a,b]\setminus F]$ is negligible, by 225G.
\medskip
{\bf (b)} So now suppose that $f$ satisfies the conditions. Set
$f^*(x)=|f'(x)|$ for $x\in F$, $0$ for
$x\in[a,b]\setminus F$. Then $f(b)\le f(a)+\int_a^bf^*$.
\medskip
\Prf\ {\bf (i)} Because $F$ is a Borel set and $f'$ is a Borel
measurable function (225J), $f^*$ is measurable. Let $\epsilon>0$.
Let $G$ be an open subset of
$\Bbb R$ such that $f[\,[a,b]\setminus F]\subseteq G$ and
$\mu G\le\epsilon$ (134Fa again). Let $g:\Bbb R\to[0,\infty]$ be a lower
semi-continuous function such that $f^*(x)\le g(x)$ for every
$x\in[a,b]$ and $\int_a^bg\le\int_a^bf^*+\epsilon$ (225I). Consider
\Centerline{$A=\{x:a\le x\le b,\,\mu([f(a),f(x)]\setminus G)
\le 2\epsilon(x-a)+\int_a^xg\}$,}
\noindent interpreting $[f(a),f(x)]$ as $\emptyset$ if $f(x)<f(a)$.
Then $a\in A\subseteq[a,b]$, so $c=\sup A$ is defined and belongs to
$[a,b]$.
Because $f$ is continuous, the function
$x\mapsto\mu([f(a),f(x)]\setminus G)$ is continuous; also
$x\mapsto 2\epsilon(x-a)+\int_a^xg$ is certainly continuous, so
$c\in A$.
\medskip
\quad{\bf (ii)} \Quer\ If $c\in F$, so that $f^*(c)=|f'(c)|$, then there
is a $\delta>0$ such that
\Centerline{$a\le c-\delta\le c+\delta\le b$,}
\Centerline{$g(x)\ge g(c)-\epsilon\ge|f'(c)|-\epsilon$ whenever
$|x-c|\le\delta$,}
\Centerline{$|\Bover{f(x)-f(c)}{x-c}-f'(c)|\le\epsilon$ whenever
$|x-c|\le\delta$.}
\noindent Consider $x=c+\delta$. Then $c<x\le b$ and
$$\eqalignno{\mu([f(a),f(x)]\setminus G)
&\le\mu([f(a),f(c)]\setminus G)+|f(x)-f(c)|\cr
&\le2\epsilon(c-a)+\int_a^cg+\epsilon(x-c)+|f'(c)|(x-c)\cr
&\le2\epsilon(c-a)+\int_a^cg
+\epsilon(x-c)+\int_c^x(g+\epsilon)\cr
\noalign{\noindent (because $g(t)\ge |f'(c)|-\epsilon$ whenever
$c\le t\le x$)}
&=2\epsilon(x-a)+\int_a^xg,\cr}$$
\noindent so $x\in A$; but $c$ is supposed to be an upper bound of
$A$.\ \Bang
Thus $c\in[a,b]\setminus F$.
\medskip
\quad{\bf (iii)} \Quer\ Now suppose, if possible, that
$c<b$. We know that $f(c)\in G$, so there is an $\eta>0$ such that
$[f(c)-\eta,f(c)+\eta]\subseteq G$; now there is a $\delta>0$
such that $|f(x)-f(c)|\le\eta$ whenever $x\in[a,b]$ and
$|x-c|\le\delta$. Set $x=\min(c+\delta,b)$; then $c<x\le b$ and
$[f(c),f(x)]\subseteq G$, so
\Centerline{$\mu([f(a),f(x)]\setminus G)
=\mu([f(a),f(c)]\setminus G)
\le 2\epsilon(c-a)+\int_a^cg
\le 2\epsilon(x-a)+\int_a^xg$}
\noindent and once again $x\in A$, even though $x>\sup A$.\ \Bang
\medskip
\quad{\bf (iv)} We conclude that $c=b$, so that $b\in A$. But this
means that
$$\eqalign{f(b)-f(a)
&\le\mu([f(a),f(b)])
\le\mu([f(a),f(b)]\setminus G)+\mu G\cr
&\le 2\epsilon(b-a)+\int_a^bg+\epsilon
\le 2\epsilon(b-a)+\int_a^bf^*+\epsilon+\epsilon\cr
&=2\epsilon(1+b-a)+\int_a^bf^*.\cr}$$
\noindent As $\epsilon$ is arbitrary, $f(b)-f(a)\le\int_a^bf^*$, as
claimed.\ \Qed
\medskip
{\bf (c)} Similarly, or applying (b) to $-f$,
$f(a)-f(b)\le\int_a^bf^*$, so that $|f(b)-f(a)|\le\int_a^bf^*$.
Of course the argument applies equally to any subinterval of $[a,b]$, so
$|f(d)-f(c)|\le\int_c^df^*$ whenever
$a\le c\le d\le b$. Now let $\epsilon>0$. By 225A once more, there
is a $\delta>0$ such that $\int_Ef^*\le\epsilon$ whenever
$E\subseteq[a,b]$ and $\mu E\le\delta$. Suppose that
$a\le a_1\le b_1\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. Then
\Centerline{$\sum_{i=1}^n|f(b_i)-f(a_i)|
\le\sum_{i=1}^n\int_{a_i}^{b_i}f^*
=\int_{\bigcupop_{i\le n}[a_i,b_i]}f^*
\le\epsilon$.}
\noindent So $f$ is absolutely continuous, as claimed.
}%end of proof of 225K
\leader{225L}{Corollary} Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$. Let $f:[a,b]\to\Bbb R$ be a continuous function which is
differentiable on the open interval $\ooint{a,b}$. If its derivative
$f'$ is integrable over $[a,b]$, then $f$ is absolutely continuous, and
$f(b)-f(a)=\int_a^bf'$.
\proof{ $f[\,[a,b]\setminus F]=\{f(a),f(b)\}$ is surely negligible, so
$f$ is absolutely continuous, by 225K; consequently
$f(b)-f(a)=\int_a^bf'$, by 225E.
}%end of proof of 225L
\leader{225M}{Corollary} Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$, and $f:[a,b]\to\Bbb R$ a continuous function. Then $f$ is
absolutely continuous iff it is continuous and of bounded variation and
$f[A]$ is negligible for every negligible $A\subseteq[a,b]$.
\proof{{\bf (a)} Suppose that $f$ is absolutely continuous. By
225C(a-b) it is continuous and of bounded variation, and by 225G we have
$f[A]$ negligible for every negligible $A\subseteq [a,b]$.
\medskip
{\bf (b)} So now suppose that $f$ satisfies the conditions. Set
$F=\{x:x\in\ooint{a,b},\,f'(x)$ is defined$\}$. By 224I once more,
$[a,b]\setminus F$ is negligible, so $f[\,[a,b]\setminus F]$ is
negligible. Moreover, also by 224I, $f'$ is integrable over $[a,b]$
or $F$. So the conditions of 225K are satisfied and $f$ is absolutely
continuous.
}%end of proof of 225M
\leader{225N}{The Cantor function}\cmmnt{ I should mention the
standard example of a continuous function of bounded variation which is
not absolutely continuous.} Let $C\subseteq[0,1]$ be the Cantor
set\cmmnt{ (134G)}.
Recall that the `Cantor function' is a non-decreasing continuous
function $f:[0,1]\to[0,1]$ such that $f'(x)$ is defined and equal to
zero for every $x\in[0,1]\setminus C$,
but $f(0)=0<1=f(1)$\cmmnt{ (134H)}. \cmmnt{Of
course} $f$ is of bounded variation and not absolutely continuous. $C$
is negligible and $f[C]=[0,1]$ is not. If $x\in C$, then for every
$n\in\Bbb N$ there is an interval of length $3^{-n}$, containing $x$, on
which $f$ increases by $2^{-n}$; so $f$ cannot be differentiable at
$x$, and the set $F=\dom f'$ of 225K is precisely $[0,1]\setminus C$, so
that $f[\,[0,1]\setminus F]=[0,1]$.
\vleader{48pt}{225O}{Complex-valued functions}\cmmnt{ As usual, I
spell out
the results above in the forms applicable to complex-valued functions.
\medskip
} {\bf (a)} Let
$(X,\Sigma,\mu)$ be any measure space and $f$ an integrable
complex-valued
function defined on a conegligible subset of $X$.
Then for any $\epsilon>0$ there are a measurable set
$E$ of finite measure and a real number
$\delta>0$ such that $\int_F|f|\le\epsilon$ whenever $F\in\Sigma$ and
$\mu(F\cap E)\le\delta$. \prooflet{(Apply 225A to $|f|$.)}
\spheader 225Ob If $[a,b]$ is a non-empty
closed interval in $\Bbb R$ and $f:[a,b]\to\Bbb C$ is a function, we say
that $f$ is {\bf absolutely continuous} if for every $\epsilon>0$ there
is a $\delta>0$ such that $\sum_{i=1}^n|f(b_i)-f(a_i)|\le\epsilon$
whenever $a\le a_1\le b_1\le a_2\le b_2\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\delta$. Observe that $f$ is absolutely
continuous iff its real and imaginary parts are both absolutely
continuous.
\spheader 225Oc Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$.
\quad(i) If $f:[a,b]\to\Bbb C$ is absolutely continuous it is of bounded
variation on $[a,b]$, so is differentiable almost everywhere in $[a,b]$,
and its derivative is integrable over $[a,b]$.
\quad(ii) If $f$, $g:[a,b]\to\Bbb C$ are absolutely continuous, so are
$f+g$ and $\zeta f$, for any $\zeta\in\Bbb C$, and $f\times g$.
\quad(iii) If $g:[a,b]\to[c,d]$ is monotonic and absolutely continuous,
and
$f:[c,d]\to\Bbb C$ is absolutely continuous, then $fg:[a,b]\to\Bbb C$ is
absolutely continuous.
\spheader 225Od Let $[a,b]$ be a non-empty closed interval in
$\Bbb R$ and $F:[a,b]\to\Bbb C$ a function. Then the following are
equiveridical:
\quad(i) there is an integrable complex-valued function $f$ such that
$F(x)=F(a)+\int_a^xf$ for every $x\in[a,b]$;
\quad(ii) $\int_a^xF'$ exists and is
equal to $F(x)-F(a)$ for every $x\in[a,b]$;
\quad(iii) $F$ is absolutely continuous.
\cmmnt{\noindent (Apply 225E to the real and imaginary parts of $F$.)}
\spheader 225Oe Let $f$ be an integrable complex-valued function
on an interval $[a,b]\subseteq\Bbb R$, and $g:[a,b]\to\Bbb C$ an
absolutely continuous function. Set $F(x)=\int_a^xf$ for $x\in[a,b]$.
Then
\Centerline{$\int_a^bf\times g
=F(b)g(b) - F(a)g(a) -\int_a^bF\times g'$.}
\cmmnt{\noindent (Apply 225F to the real and imaginary parts of $f$
and $g$.)}
\spheader 225Of Let $f$ be a continuous complex-valued function
on a closed interval $[a,b]\subseteq\Bbb R$, and suppose that $f$ is
differentiable at every point of the open interval $\ooint{a,b}$, with
$f'$ integrable over $[a,b]$. Then $f$ is absolutely continuous.
\cmmnt{(Apply 225L to the real and imaginary parts of $f$.)}
\cmmnt{\spheader 225Og For a result corresponding to 225M, see 264Yp.}
\exercises{
\leader{225X}{Basic exercises (a)}
%\spheader 225Xa
Show directly from the definition in
225B (without appealing to
225E) that any absolutely continuous real-valued function on a closed
interval $[a,b]$ is expressible as the difference of non-decreasing
absolutely continuous functions.
%225B
\spheader 225Xb Show directly from the definition in 225B and
the Mean Value Theorem (without appealing to 225K) that if a function
$f$ is continuous on a closed interval $[a,b]$, differentiable on the
open interval $\ooint{a,b}$, and has bounded derivative in
$\ooint{a,b}$, then $f$ is absolutely continuous, so that
$f(x)=f(a)+\int_a^xf'$ for every $x\in[a,b]$.
%225E
\spheader 225Xc Show that if $f:[a,b]\to\Bbb R$ is absolutely
continuous, then $\Var f=\int_a^b|f'|$. \Hint{put 224I and
225E together.}
%225E
\spheader 225Xd Let $g:\Bbb R\to\Bbb R$ be a
non-decreasing function which is absolutely continuous on every bounded
interval; let $\mu_g$ be the associated Lebesgue-Stieltjes measure
(114Xa), and $\Sigma_g$ its domain. Show that $\int_Eg'=\mu_gE$ for
any $E\in\Sigma_g$, if we allow $\infty$ as a value of the
integral. \Hint{start with intervals $E$.}
%225E
\spheader 225Xe Let $g:[a,b]\to\Bbb R$ be a non-decreasing
absolutely continuous function, and $f:[g(a),g(b)]\to\Bbb R$ a
continuous function. Show that $\int_{g(a)}^{g(b)}f(t)dt=
\int_a^bf(g(t))g'(t)dt$. \Hint{set $F(x)=\int_{g(a)}^xf$,
$G=Fg$ and consider $\int_a^bG'(t)dt$. See also 263J.}
%225E
\spheader 225Xf Suppose that $I\subseteq\Bbb R$ is any
non-trivial interval (bounded or unbounded, open, closed or half-open,
but not empty or a singleton), and $f:I\to\Bbb R$ a function. Show
that
$f$ is absolutely continuous on every closed bounded subinterval of $I$
iff there is a function $g$ such that $\int_a^bg=f(b)-f(a)$ whenever
$a\le b$ in $I$, and in this case $g$ is integrable iff $f$ is of
bounded variation on $I$.
%225E
\spheader 225Xg Show that
$\biggerint_0^1\Bover{\ln x}{x-1}dx=\sum_{n=1}^{\infty}\Bover1{n^2}$.
\Hint{use 225F to find $\int_0^1x^n\ln x\,dx$, and recall that
$\bover1{1-x}=\sum_{n=0}^{\infty}x^n$ for $0\le x<1$.}
%225F
\spheader 225Xh(i) Show that $\int_0^1t^adt$ is finite for
every $a>-1$. (ii) Show that $\int_1^{\infty}t^ae^{-t}dt$ is finite
for every $a\in\Bbb R$. \Hint{show that there is an $M$ such
that $t^a\le Me^{t/2}$ for $t\ge 1$.} (iii) Show that
$\Gamma(a)=\int_0^{\infty}t^{a-1}e^{-t}dt$ is defined for every $a>0$.
(iv) Show that $\Gamma(a+1)=a\Gamma(a)$ for every $a>0$. (v) Show that
$\Gamma(n+1)=n!$ for every $n\in\Bbb N$.
($\Gamma$ is of course the {\bf gamma function}.)
%225F
\spheader 225Xi Show that if $b>0$ then
$\int_0^{\infty}u^{b-1}e^{-u^2/2}du=2^{(b-2)/2}\Gamma(\bover{b}2)$.
\Hint{consider $f(t)=t^{(b-2)/2}e^{-t}$, $g(u)=u^2/2$ in 225Xe.}
%225Xe, 225Xh, 225F
\spheader 225Xj Suppose that $f$, $g$ are
lower semi-continuous functions, defined on subsets of $\BbbR^r$,
and taking values in $\ocint{-\infty,\infty}$. (i) Show that $f+g$,
$f\wedge g$ and $f\vee g$ are lower semi-continuous, and that
$\alpha f$ is lower
semi-continuous for every $\alpha\ge 0$. (ii) Show that if $f$ and $g$
are non-negative, then $f\times g$ is lower semi-continuous.
(iii) Show that if $f$ is non-negative and $g$ is continuous, then
$f\times g$ is lower semi-continuous. (iv) Show that if $f$ is
non-decreasing then the composition $fg$ is lower semi-continuous.
%225H
\spheader 225Xk Let $A$ be a non-empty family of lower
semi-continuous functions defined on subsets of $\BbbR^r$ and taking
values in $[-\infty,\infty]$. Set $g(x)=\sup\{f(x):f\in A,\,x\in\dom
f\}$ for $x\in