forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt226.tex
717 lines (555 loc) · 26.2 KB
/
mt226.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
\frfilename{mt226.tex}
\versiondate{16.11.13}
\copyrightdate{2000}
\def\chaptername{The Fundamental Theorem of Calculus}
\def\sectionname{The Lebesgue decomposition of a function of bounded
variation}
\newsection{226}
I end this chapter with some notes on a method of analysing a general
function of bounded variation which may help to give a picture of what
such functions can be, though (apart from 226A)
it is hardly needed in this volume.
\leader{226A}{Sums over arbitrary index sets} \cmmnt{To get a full
picture of this
fragment of real analysis, a bit of preparation will be
helpful. This concerns the notion of a sum over an arbitrary
index set, which I have rather been skirting around so far.
\header{226Aa}}{\bf (a)} If $I$ is any set and
$\langle a_i\rangle_{i\in I}$ any family in $[0,\infty]$, we set
\Centerline{$\sum_{i\in I}a_i
=\sup\{\sum_{i\in K}a_i:K\text{ is a finite subset of }I\}$,}
\noindent with the convention that $\sum_{i\in\emptyset}a_i=0$.
\cmmnt{(See 112Bd, 222Ba.)} For general $a_i\in[-\infty,\infty]$, we
can set
\Centerline{$\sum_{i\in I}a_i=\sum_{i\in I}a_i^+-\sum_{i\in I}a_i^-$}
\noindent if this is defined in $[-\infty,\infty]$\cmmnt{, that is, at
least one of $\sum_{i\in I}a_i^+$, $\sum_{i\in I}a_i^-$ is finite},
where $a^+=\max(a,0)$ and $a^-=\max(-a,0)$ for each $a$. If
$\sum_{i\in I}a_i$ is defined and finite, we say
that $\familyiI{a_i}$ is {\bf summable}.
\header{226Ab}{\bf (b)}\cmmnt{ Since this is a book on measure theory,
I will immediately describe the relationship between this kind of
summability
and an appropriate notion of integration.} For any set $I$, we have
the corresponding `counting measure' $\mu$ on $I$\cmmnt{ (112Bd)}.
Every\cmmnt{ subset
of $I$ is measurable, so every} family $\langle a_i\rangle_{i\in I}$ of
real numbers is a measurable real-valued function on $I$.
A\cmmnt{ subset of $I$ has finite measure iff it is finite;
so a} real-valued
function $f$ on $I$ is `simple' if $K=\{i:f(i)\ne 0\}$ is finite.
\cmmnt{In this case,
\Centerline{$\int fd\mu=\sum_{i\in K}f(i)=\sum_{i\in I}f(i)$}
\noindent as defined in part (a). The measure $\mu$ is semi-finite
(211Nc) so a non-negative function $f$ is integrable iff
$\int f=\sup_{\mu K<\infty}\int_Kf$ is finite (213B); but of course
this supremum is precisely
\Centerline{$\sup\{\sum_{i\in K}f(i):K\subseteq I\text{ is finite}\}
=\sum_{i\in I}f(i)$.}
\noindent}%end of comment
Now a general function $f:I\to\Bbb R$ is integrable\cmmnt{ iff it is
measurable and $\int|f|d\mu<\infty$, that is,} iff
$\sum_{i\in I}|f(i)|<\infty$, and in this case
\dvro{\Centerline{$\int fd\mu=\sum_{i\in I}f(i)$,}}
{\Centerline{$\int fd\mu
=\int f^+d\mu-\int f^-d\mu
=\sum_{i\in I}f(i)^+-\sum_{i\in I}f(i)^-
=\sum_{i\in I}f(i)$,}}
\noindent\cmmnt{writing $f^{\pm}(i)=f(i)^{\pm}$ for each $i$. }Thus
we have
\Centerline{$\sum_{i\in I}a_i=\int_Ia_i\mu(di)$,}
\noindent and the standard rules under which we allow $\infty$ as the
value of an integral\cmmnt{ (133A, 135F)} match\cmmnt{ well with} the
interpretations in (a) above.
\header{226Ac}{\bf (c)}\cmmnt{ Accordingly, and unsurprisingly, the
operation
of summation is a linear operation on the linear space of summable
families of real numbers.
} I observe here that this notion of summability is `absolute'; a
family $\langle a_i\rangle_{i\in I}$ is summable iff it is absolutely
summable. \cmmnt{This is necessary because it must also be
`unconditional'; we have no structure on an arbitrary set $I$ to guide
us to take the sum in any particular order. See 226Xa. In
particular, I distinguish between `$\sum_{n\in\Bbb N}a_n$', which in
this book will always be interpreted as in 226A above, and
`$\sum_{n=0}^{\infty}a_n$' which (if it makes a difference) should be
interpreted as $\lim_{m\to\infty}\sum_{n=0}^ma_n$. So, for instance,
$\sum_{n=0}^{\infty}\Bover{(-1)^n}{n+1}=\ln 2$, while
$\sum_{n\in\Bbb N}\Bover{(-1)^n}{n+1}$ is undefined. Of course
$\sum_{n=0}^{\infty}a_n=\sum_{n\in\Bbb N}a_n$ whenever the latter is
defined in $[-\infty,\infty]$.}
\header{226Ad}{\bf (d)}\cmmnt{ There is another, and very important,
approach
to the sum described here.} If $\langle a_i\rangle_{i\in I}$ is an
(absolutely) summable family of real numbers, then for every
$\epsilon>0$ there is a finite $K\subseteq I$ such that
$\sum_{i\in I\setminus K}|a_i|\le\epsilon$. \prooflet{\Prf\ This is
nothing but a
special case of 225A; there is a set $K$ with $\mu K<\infty$ such that
$\int_{I\setminus K}|a_i|\mu(di)\le\epsilon$, but
\Centerline{$\int_{I\setminus K}|a_i|\mu(di)
=\sum_{i\in I\setminus K}|a_i|$. \Qed}
\noindent}\cmmnt{(Of course there are `direct' proofs of this
result from
the definition in (a), not mentioning measures or integrals. But
I think you will see that they rely on the same idea as that in the
proof of 225A.) }Consequently, for any family
$\langle a_i\rangle_{i\in I}$ of real numbers and any $s\in\Bbb R$, the
following are equiveridical:
\inset{(i) $\sum_{i\in I}a_i=s$;}
\inset{(ii) for every $\epsilon>0$ there is a finite $K\subseteq I$ such
that $|s-\sum_{i\in J}a_i|\le\epsilon$ whenever $J$ is finite and
$K\subseteq J\subseteq I$.}
\noindent\prooflet{\Prf\ {\bf (i)$\Rightarrow$(ii)} Take $K$ such that
$\sum_{i\in
I\setminus K}|a_i|\le\epsilon$. If $K\subseteq J\subseteq I$, then
\Centerline{$|s-\sum_{i\in J}a_i|=|\sum_{i\in I\setminus J}a_i|
\le\sum_{i\in I\setminus K}|a_i|\le\epsilon$.}
{\bf (ii)$\Rightarrow$(i)} Let $\epsilon>0$, and let $K\subseteq I$ be
as described in (ii). If $J\subseteq I\setminus K$ is any finite set,
then set $J_1=\{i:i\in J,\,a_i\ge 0\}$, $J_2=J\setminus J_1$. We have
$$\eqalign{\sum_{i\in J}|a_i|
&=|\sum_{i\in J_1\cup K}a_i-\sum_{i\in J_2\cup K}a_i|\cr
&\le|s-\sum_{i\in J_1\cup K}a_i|+|s-\sum_{i\in J_2\cup K}a_i|
\le 2\epsilon.\cr}$$
\noindent As $J$ is arbitrary, $\sum_{i\in I\setminus K}|a_i|\le
2\epsilon$ and
\Centerline{$\sum_{i\in I}|a_i|\le\sum_{i\in K}|a_i|+2\epsilon<\infty$.}
\noindent Accordingly $\sum_{i\in I}a_i$ is well-defined in $\Bbb R$.
Also
\Centerline{$|s-\sum_{i\in I}a_i|
\le|s-\sum_{i\in K}a_i|+|\sum_{i\in I\setminus K}a_i|
\le\epsilon+\sum_{i\in I\setminus K}|a_i|
\le 3\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $\sum_{i\in I}a_i=s$, as required.
\Qed}
\cmmnt{In this way, we express $\sum_{i\in I}a_i$ directly as a limit;
we could write it as
\Centerline{$\sum_{i\in I}a_i=\lim_{K\uparrow I}\sum_{i\in K}a_i$,}
\noindent on the understanding that we look at finite sets $K$ in the
right-hand formula.
}%end of comment
\header{226Ae}{\bf (e)}\cmmnt{ Yet another approach is through the
following
fact.} If $\sum_{i\in I}|a_i|<\infty$, then\cmmnt{ for any
$\delta>0$ the
set $\{i:|a_i|\ge\delta\}$ is finite, indeed can have at most
${1\over{\delta}}\sum_{i\in I}|a_i|$ members; consequently}
\Centerline{$J=\{i:a_i\ne 0\}
=\bigcup_{n\in\Bbb N}\{i:|a_i|\ge 2^{-n}\}$}
\noindent is countable\cmmnt{ (1A1F)}. If $J$ is finite,
then\cmmnt{ of course} $\sum_{i\in I}a_i=\sum_{i\in J}a_i$ reduces to a finite sum. Otherwise, we can
enumerate $J$ as $\sequencen{j_n}$, and we shall have
\Centerline{$\sum_{i\in I}a_i=\sum_{i\in
J}a_i=\lim_{n\to\infty}\sum_{k=0}^na_{j_k}=\sum_{n=0}^{\infty}a_{j_n}$
\dvro{.}{}}
\noindent\cmmnt{(using (d) to reduce the sum $\sum_{i\in J}a_i$ to a
limit of
finite sums). }Conversely, if $\langle a_i\rangle_{i\in I}$ is such
that there is a countably infinite $J\subseteq\{i:a_i\ne 0\}$ enumerated
as $\sequencen{j_n}$, and if $\sum_{n=0}^{\infty}|a_{j_n}|<\infty$, then
$\sum_{i\in I}a_i$ will be $\sum_{n=0}^{\infty}a_{j_n}$.
\spheader 226Af
%new 2008
\cmmnt{It will be useful later to have a fragment of general theory.}
Let $I$ and
$J$ be sets and $\langle a_{ij}\rangle_{i\in I,j\in J}$ a family in
$[0,\infty]$. Then
\Centerline{$\sum_{(i,j)\in I\times J}a_{ij}
=\sum_{i\in I}(\sum_{j\in J}a_{ij})
=\sum_{j\in J}(\sum_{i\in I}a_{ij})$.}
\prooflet{\noindent\Prf\ (i) If
$\sum_{(i,j)\in I\times J}a_{ij}>u$, then there is a finite set
$M\subseteq I\times J$ such that
$\sum_{(i,j)\in M}a_{ij}>u$. Now $K=\{i:(i,j)\in M\}$ and
$L=\{j:(i,j)\in M\}$ are finite, so
$$\eqalignno{\sum_{i\in I}\sum_{j\in J}a_{ij}
&\ge\sum_{i\in K}\sum_{j\in J}a_{ij}
\ge\sum_{i\in K}\sum_{j\in L}a_{ij}\cr
\displaycause{because $\sum_{j\in J}a_{ij}\ge\sum_{j\in L}a_{ij}$ for every
$i$}
&=\sum_{(i,j)\in K\times L}a_{ij}
\ge\sum_{(i,j)\in M}a_{ij}
>u.\cr}$$
\noindent As $u$ is arbitrary,
$\sum_{i\in I}\sum_{j\in J}a_{ij}\ge\sum_{(i,j)\in I\times J}a_{ij}$.
(ii) If $\sum_{i\in I}\sum_{j\in J}a_{ij}>u\ge 0$, there is a
non-empty finite
set $K\subseteq I$ such that $\sum_{i\in K}\sum_{j\in J}a_{ij}>u$.
Let $\epsilon\in\ooint{0,1}$ be such that
$\sum_{i\in K}\sum_{j\in J}a_{ij}>u+\epsilon$, and set
$\delta=\Bover{\epsilon}{\#(K)}$. For each $i\in K$ set
$\gamma_i=\min(u+1,\sum_{j\in J}a_{ij})-\delta$;
then
\Centerline{$\epsilon+\sum_{i\in K}\gamma_i
=\sum_{i\in K}\min(u+1,\sum_{j\in J}a_{ij})
\ge\min(u+1,\sum_{i\in K}\sum_{j\in J}a_{ij})
>u+\epsilon$,}
\noindent so $\sum_{i\in K}\gamma_i>u$. For each $i\in K$,
$\gamma_i<\sum_{j\in J}a_{ij}$, so there is a finite
$L_i\subseteq J$ such that $\sum_{j\in L_i}a_{ij}\ge\gamma_i$.
Set $M=\{(i,j):i\in K$, $j\in L_i\}$, so that $M$ is a finite subset of
$I\times J$; then
\Centerline{$\sum_{(i,j)\in I\times J}a_{ij}
\ge\sum_{(i,j)\in M}a_{ij}
=\sum_{i\in K}\sum_{j\in L_i}a_{ij}
\ge\sum_{i\in K}\gamma_i
>u$.}
\noindent As $u$ is arbitrary,
$\sum_{(i,j)\in I\times J}a_{ij}\ge\sum_{i\in I}\sum_{j\in J}a_{ij}$ and
these two sums are equal. (iii) Similarly,
$\sum_{(i,j)\in I\times J}a_{ij}=\sum_{j\in J}\sum_{i\in I}a_{ij}$.\ \Qed}
\leader{226B}{Saltus functions}\cmmnt{ Now we are ready for a special
type of
function of bounded variation on $\Bbb R$.} Suppose that $a<b$ in
$\Bbb R$.
\header{226Ba}{\bf (a)} A (real) {\bf saltus function} on $[a,b]$ is
a function $F:[a,b]\to\Bbb R$ expressible in the form
\Centerline{$F(x)=\sum_{t\in\coint{a,x}}u_t+\sum_{t\in[a,x]}v_t$}
\noindent for $x\in [a,b]$, where $\langle
u_t\rangle_{t\in\coint{a,b}}$,
$\langle v_t\rangle_{t\in[a,b]}$ are real-valued families such that
$\sum_{t\in\coint{a,b}}|u_t|$ and
$\sum_{t\in[a,b]}|v_t|$ are finite.
\header{226Bb}{\bf (b)} For any function $F:[a,b]\to\Bbb R$ we can write
\Centerline{$F(x^+)=\lim_{y\downarrow x}F(y)$ if $x\in\coint{a,b}$ and
the limit exists,}
\Centerline{$F(x^-)=\lim_{y\uparrow x}F(y)$ if $x\in\ocint{a,b}$ and the
limit exists.}
\noindent\cmmnt{(I hope that this will not lead to confusion with the
alternative interpretation of $x^+$ as $\max(x,0)$.) }Observe that if
$F$ is a saltus function, as defined in (b),
with associated families $\langle u_t\rangle_{t\in\coint{a,b}}$ and
$\langle v_t\rangle_{t\in[a,b]}$, then $v_a=F(a)$, $v_x=F(x)-F(x^-)$ for
$x\in\ocint{a,b}$ and $u_x=F(x^+)-F(x)$ for $x\in\coint{a,b}$.
\prooflet{\Prf\ Let
$\epsilon>0$. As remarked in 226Ad, there is a finite
$K\subseteq[a,b]$ such that
\Centerline{$\sum_{t\in\coint{a,b}\setminus
K}|u_t|+\sum_{t\in[a,b]\setminus K}|v_t|\le\epsilon$.}
\noindent Given $x\in[a,b]$, let $\delta>0$ be such that
$[x-\delta,x+\delta]$ contains no point of $K$ except perhaps $x$.
In this case, if $\max(a,x-\delta)\le y<x$, we must have
$$\eqalign{|F(y)-(F(x)-v_x)|
&=|\sum_{t\in\coint{y,x}}u_t+\sum_{t\in\ooint{y,x}}v_t|\cr
&\le\sum_{t\in\coint{a,b}\setminus K}|u_t|
+\sum_{t\in[a,b]\setminus K}|v_t|
\le\epsilon,\cr}$$
\noindent while if $x<y\le\min(b,x+\delta)$ we shall have
$$\eqalign{|F(y)-(F(x)+u_x)|
&=|\sum_{t\in\ooint{x,y}}u_t+\sum_{t\in\ocint{x,y}}v_t|\cr
&\le\sum_{t\in\coint{a,b}\setminus K}|u_t|
+\sum_{t\in[a,b]\setminus K}|v_t|
\le\epsilon.\cr}$$
\noindent As $\epsilon$ is arbitrary, we get $F(x^-)=F(x)-v_x$ (if
$x>a$) and $F(x^+)=F(x)+u_x$ (if $x<b$). \Qed}
\cmmnt{It follows that }$F$ is continuous at $x\in\ooint{a,b}$
iff $u_x=v_x=0$,
while $F$ is continuous at $a$ iff $u_a=0$ and $F$ is continuous at $b$
iff $v_b=0$. In particular, $\{x:x\in[a,b],\,F\text{ is not continuous
at }x\}$ is countable\cmmnt{ (see 226Ae)}.
\header{226Bc}{\bf (c)} If $F$ is a saltus function defined on $[a,b]$,
with associated families $\langle u_t\rangle_{t\in\coint{a,b}}$ and
$\langle v_t\rangle_{t\in[a,b]}$, then $F$ is of bounded variation on
$[a,b]$, and
\Centerline{$\Var_{[a,b]}(F)
\le\sum_{t\in\coint{a,b}}|u_t|+\sum_{t\in\ocint{a,b}}|v_t|$.}
\noindent\prooflet{\Prf\ If $a\le x<y\le b$, then
\Centerline{$F(y)-F(x)=u_x+\sum_{t\in\ooint{x,y}}(u_t+v_t)+v_y$,}
\noindent so
\Centerline{$|F(y)-F(x)|
\le\sum_{t\in\coint{x,y}}|u_t|+\sum_{t\in\ocint{x,y}}|v_t|$.}
\noindent If $a\le a_0\le a_1\le\ldots\le a_n\le b$, then
$$\eqalign{\sum_{i=1}^n|F(a_i)-F(a_{i-1})|
&\le\sum_{i=1}^n\bigl(\sum_{t\in\coint{a_{i-1},a_i}}|u_t|
+\sum_{t\in\ocint{a_{i-1},a_i}}|v_t|\bigr)\cr
&\le\sum_{t\in\coint{a,b}}|u_t|+\sum_{t\in\ocint{a,b}}|v_t|.\cr}$$
\noindent Consequently
\Centerline{$\Var_{[a,b]}(F)
\le\sum_{t\in\coint{a,b}}|u_t|+\sum_{t\in\ocint{a,b}}|v_t|<\infty$. \Qed}}
\header{226Bd}{\bf (d)} The inequality in (c) is actually an equality.
\prooflet{To see this, note first that if $a\le x<y\le b$, then
$\Var_{[x,y]}(F)\ge|u_x|+|v_y|$. \Prf\ I noted in (b) that
$u_x=\lim_{t\downarrow x}F(t)-F(x)$ and
$v_y=F(y)-\lim_{t\uparrow y}F(t)$.
So, given $\epsilon>0$, we can find $t_1$, $t_2$ such that
$x<t_1\le t_2<y$ and
\Centerline{$|F(t_1)-F(x)|\ge|u_x|-\epsilon$,
\quad$|F(y)-F(t_2)|\ge|v_y|-\epsilon$.}
\noindent Now
\Centerline{$\Var_{[x,y]}(F)
\ge|F(t_1)-F(x)|+|F(t_2)-F(t_1)|+|F(y)-F(t_2)|
\ge|u_x|+|v_y|-2\epsilon$.}
\noindent As $\epsilon$ is arbitrary, we have the result. \Qed
Now, given $a\le t_0<t_1<\ldots<t_n\le b$, we must have
$$\eqalignno{\Var_{[a,b]}(F)
&\ge\sum_{i=1}^n\Var_{[t_{i-1},t_i]}(F)\cr
\noalign{\noindent(using 224Cc)}
&\ge\sum_{i=1}^n|u_{t_{i-1}}|+|v_{t_i}|.\cr}$$
\noindent As $t_0,\ldots,t_n$ are arbitrary,
\Centerline{$\Var_{[a,b]}(F)
\ge\sum_{t\in\coint{a,b}}|u_t|+\sum_{t\in\ocint{a,b}}|v_t|$,}
\noindent as required.}
\header{226Be}{\bf (e)} Because a saltus function is of bounded
variation\cmmnt{ ((c) above)}, it is differentiable almost
everywhere\cmmnt{ (224I)}.
In fact its derivative is zero almost everywhere. \prooflet{\Prf\ Let
$F:[a,b]\to\Bbb R$ be a saltus function, with associated families
$\langle u_t\rangle_{t\in\coint{a,b}}$, $\langle
v_t\rangle_{t\in[a,b]}$.
Let $\epsilon>0$. Let $K\subseteq[a,b]$ be a finite set such that
\Centerline{$\sum_{t\in\coint{a,b}\setminus
K}|u_t|+\sum_{t\in[a,b]\setminus K}|v_t|\le\epsilon$.}
\noindent Set
$$\eqalign{u'_t
&=u_t\text{ if }t\in\coint{a,b}\cap K,\cr
&=0\text{ if }t\in\coint{a,b}\setminus K,\cr
v'_t&=v_t\text{ if }t\in K,\cr
&=0\text{ if }t\in[a,b]\setminus K,\cr
u''_t&=u_t-u'_t\text{ for }t\in\coint{a,b},\cr
v''_t&=v_t-v'_t\text{ for }t\in[a,b].\cr}$$
\noindent Let $G$, $H$ be the saltus functions corresponding to
$\langle u'_t\rangle_{t\in\coint{a,b}}$,
$\langle v'_t\rangle_{t\in[a,b]}$ and
$\langle u''_t\rangle_{t\in\coint{a,b}}$
$\langle v''_t\rangle_{t\in[a,b]}$, so that $F=G+H$. Then $G'(t)=0$
for every $t\in\ooint{a,b}\setminus K$, since $\ooint{a,b}\setminus K$
comprises a finite number of open intervals on each of which $G$ is
constant. So $G'=0$ a.e.\ and $F'\eae H'$. On the other hand,
\Centerline{$\int_a^b|H'|\le\Var_{[a,b]}(H)
=\sum_{t\in\coint{a,b}\setminus K}|u_t|
+\sum_{t\in\ocint{a,b}\setminus K}|v_t|
\le\epsilon$,}
\noindent using 224I and (d) above. So
\Centerline{$\int_a^b|F'|=\int_a^b|H'|\le\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $\int_a^b|F'|=0$ and $F'=0$ a.e.,
as claimed. \Qed}
\leader{226C}{The Lebesgue decomposition of a function of bounded
variation} Take $a$, $b\in\Bbb R$ with $a<b$.
\header{226Ca}{\bf (a)} If $F:[a,b]\to\Bbb R$ is non-decreasing, set
$v_a=0$, $v_t=F(t)-F(t^-)$ for $t\in\ocint{a,b}$, $u_t=F(t^+)-F(t)$ for
$t\in\coint{a,b}$\cmmnt{, defining $F(t^+)$, $F(t^-)$ as in 226Bb}.
Then all the $v_t$, $u_t$ are
non-negative, and\cmmnt{ if $a<t_0<t_1<\ldots<t_n< b$, then
\Centerline{$\sum_{i=0}^n(u_{t_i}+v_{t_i})
=\sum_{i=0}^n(F(t_i^+)-F(t_i^-))\le F(b)-F(a)$.}
\noindent Accordingly}
$\sum_{t\in\coint{a,b}}u_t$ and $\sum_{t\in[a,b]}v_t$ are both finite.
Let $F_p$ be the corresponding saltus function\cmmnt{, as defined in
226Ba, so that
\Centerline{$F_p(x)
=F(a^+)-F(a)+\sum_{t\in\ooint{a,x}}(F(t^+)-F(t^-))+F(x)
-F(x^-)$}
\noindent if $a<x\le b$}. \cmmnt{If $a\le x<y\le b$ then
$$\eqalign{F_p(y)-F_p(x)
&=F(x^+)-F(x)+\sum_{t\in\ooint{x,y}}(F(t^+)-F(t^-))+F(y)-F(y^-)\cr
&\le F(y)-F(x)\cr}$$
\noindent because if $x=t_0<t_1<\ldots<t_n<t_{n+1}=y$ then
$$\eqalign{F(x^+)-F(x)
&+\sum_{i=1}^{n}(F(t_i^+)-F(t_i^-))+F(y)-F(y^-)\cr
&=F(y)-F(x)-\sum_{i=1}^{n+1}(F(t_i^-)-F(t_{i-1}^+))
\le F(y)-F(x).\cr}$$
\noindent Accordingly both }$F_p$ and $F_c=F-F_p$ are
non-decreasing. \cmmnt{Also, because
\Centerline{$F_p(a)=0=v_a$,}
\Centerline{$F_p(t)-F_p(t^-)=v_t=F(t)-F(t^-)$ for
$t\in\ocint{a,b}$,}
\Centerline{$F_p(t^+)-F_p(t)=u_t=F(t^+)-F(t)$ for
$t\in\coint{a,b}$,}
\noindent we shall have
\Centerline{$F_c(a)=F(a)$,}
\Centerline{$F_c(t)=F_c(t^-)$ for
$t\in\ocint{a,b}$,}
\Centerline{$F_c(t)=F_c(t^+)$ for $t\in\coint{a,b}$,}
\noindent and }$F_c$ is continuous.
Clearly this expression of $F=F_p+F_c$ as the sum of a saltus function
and a continuous function is unique, except that we can freely add a
constant to one if we subtract it from the other.
\header{226Cb}{\bf (b)}\cmmnt{ Still taking $F:[a,b]\to\Bbb R$ to be
non-decreasing, we know that $F'$ is integrable (222C);
moreover,
$F'\eae F'_c$, by 226Be.} Set $F_{ac}(x)=F(a)+\int_a^xF'$
for each $x\in[a,b]$. \cmmnt{We have
\Centerline{$F_{ac}(y)-F_{ac}(x)=\int_x^yF_c'\le F_c(y)-F_c(x)$}
\noindent for $a\le x\le y\le b$ (222C again), so} $F_{cs}=F_c-F_{ac}$
is still non-decreasing; \cmmnt{$F_{ac}$ is continuous (225A),
so }$F_{cs}$ is
continuous; \cmmnt{$F_{ac}'\eae F'\eae F_c'$ (222E),
so }$F_{cs}'=0$ a.e.
Again, the expression of $F_c=F_{ac}+F_{cs}$ as the sum of an absolutely
continuous function and a function with zero derivative almost
everywhere is unique, except for the possibility of moving a constant
from one to the other\cmmnt{, because two absolutely continuous
functions whose
derivatives are equal almost everywhere must differ by a constant
(225D)}.
\header{226Cc}{\bf (c)} Putting\cmmnt{ all} these together: if
$F:[a,b]\to\Bbb R$ is any
non-decreasing function, it is expressible as $F_p+F_{ac}+F_{cs}$, where
$F_p$ is a saltus function, $F_{ac}$ is absolutely continuous, and
$F_{cs}$ is continuous and differentiable, with zero derivative, almost
everywhere; all three components are non-decreasing; and the
expression is unique if we say that $F_{ac}(a)=F(a)$ and
$F_p(a)=F_{cs}(a)=0$.
The Cantor function $f:[0,1]\to[0,1]$\cmmnt{ (134H)} is continuous and
$f'=0$ a.e.\cmmnt{ (134Hb)}, so $f_p=f_{ac}=0$ and $f=f_{cs}$.
Setting $g(x)=\bover12(x+f(x))$ for $x\in[0,1]$\cmmnt{, as in 134I},
we get $g_p(x)=0$, $g_{ac}(x)={x\over 2}$ and
$g_{cs}(x)={1\over 2}f(x)$.
\header{226Cd}{\bf (d)} Now suppose that $F:[a,b]\to\Bbb R$ is of
bounded variation.
Then it is expressible as a difference $G-H$ of
non-decreasing functions\cmmnt{ (224D)}. So writing $F_p=G_p-H_p$,
etc., we can express $F$ as a sum $F_p+F_{cs}+F_{ac}$, where $F_p$ is a
saltus function, $F_{ac}$ is absolutely continuous, $F_{cs}$ is
continuous, $F_{cs}'=0$ a.e., $F_{ac}(a)=F(a)$ and $F_{cs}(a)=F_{p}(a)=0$.
Under these conditions the expression is unique\dvro{.}{, because (for
instance) $F_p(t^+)-F_p(t)=F(t^+)-F(t)$ for $t\in\coint{a,b}$, while
$F_{ac}'\eae(F-F_p)'\eae F'$.}
This is a {\bf Lebesgue decomposition} of the function $F$.
\cmmnt{(I have to say `a' Lebesgue decomposition because of course
the assignments $F_{ac}(a)=F(a)$, $F_{p}(a)=F_{cs}(a)=0$ are arbitrary.)} I will call $F_p$ the {\bf saltus part} of $F$.
\leader{226D}{Complex functions} \cmmnt{The modifications needed to
deal with complex functions are elementary.
\medskip
}{\bf (a)} If $I$ is any set and
$\langle a_j\rangle_{j\in I}$ is a family of complex numbers, then the
following are equiveridical:
\inset{(i) $\sum_{j\in I}|a_j|<\infty$;}
\inset{(ii) there is an $s\in\Bbb C$ such that for every $\epsilon>0$
there is a finite $K\subseteq I$ such that
$|s-\sum_{j\in J}a_j|\le\epsilon$ whenever $J$ is finite and
$K\subseteq J\subseteq I$.}
\noindent In this case
\Centerline{$s=\sum_{j\in I}\Real(a_j)+i\sum_{j\in
I}\Imag(a_j)=\int_Ia_j\mu(dj)$,}
\noindent where $\mu$ is counting measure on $I$, and we write
$s=\sum_{j\in I}a_j$.
\header{226Db}{\bf (b)} If $a<b$ in $\Bbb R$, a complex {\bf saltus
function} on $[a,b]$ is a function $F:[a,b]\to\Bbb C$ expressible in the
form
\Centerline{$F(x)=\sum_{t\in\coint{a,x}}u_t+\sum_{t\in[a,x]}v_t$}
\noindent for $x\in [a,b]$, where $\langle
u_t\rangle_{t\in\coint{a,b}}$,
$\langle v_t\rangle_{t\in[a,b]}$ are complex-valued families such that
$\sum_{t\in\coint{a,b}}|u_t|$ and
$\sum_{t\in[a,b]}|v_t|$ are finite\cmmnt{; that is, if the real and
imaginary parts of $F$ are saltus functions}. In this case $F$ is
continuous except at countably many points and differentiable, with zero
derivative, almost everywhere in $[a,b]$, and
\Centerline{$u_x=\lim_{t\downarrow x}F(t)-F(x)$ for every
$x\in\coint{a,b}$,}
\Centerline{$v_x=\lim_{t\uparrow x}F(x)-F(t)$ for every
$x\in\ocint{a,b}$\dvro{.}{}}
\noindent\cmmnt{(apply the results of 226B to the real and imaginary
parts of $F$). }$F$ is of bounded variation, and its variation is
\Centerline{$\Var_{[a,b]}(F)
=\sum_{t\in\coint{a,b}}|u_t|+\sum_{t\in\ocint{a,b}}|v_t|$\dvro{.}{}}
\cmmnt{\noindent (repeat the arguments of 226Bc-d).}
\header{226Dc}{\bf (c)} If $F:[a,b]\to\Bbb C$ is a function of bounded
variation, where $a<b$ in $\Bbb R$, it is uniquely expressible as
$F=F_p+F_{cs}+F_{ac}$, where $F_p$ is a saltus function, $F_{ac}$ is
absolutely continuous, $F_{cs}$ is continuous and has zero derivative
almost everywhere, and $F_{ac}(a)=F(a)$, $F_p(a)=F_{cs}(a)=0$.
\cmmnt{(Apply
226C to the real and imaginary parts of $F$.)}
\leader{226E}{}\cmmnt{ As an elementary exercise in the language of
226A, I interpolate a version of a theorem of B.Levi
%Levi 1906
which is sometimes useful.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space, $I$
a {\it countable} set, and $\familyiI{f_i}$ a family of $\mu$-integrable
real- or complex-valued functions such that $\sum_{i\in I}\int|f_i|d\mu$
is finite. Then
$f(x)=\sum_{i\in I}f_i(x)$ is defined almost everywhere and
$\int fd\mu=\sum_{i\in I}\int f_id\mu$.
\proof{ If $I$ is finite this is elementary. Otherwise, since there
must be a bijection between $I$ and $\Bbb N$, we may take it that
$I=\Bbb N$. Setting $g_n=\sum_{i=0}^n|f_i|$ for each $n$, we have a
non-decreasing sequence $\sequencen{g_n}$ of integrable functions such
that $\int g_n\le\sum_{i\in\Bbb N}\int|f_i|$ for every $n$, so that
$g=\sup_{n\in\Bbb N}g_n$ is integrable, by B.Levi's theorem as stated in
123A. In particular, $g$ is finite almost everywhere. Now if
$x\in X$ is such that $g(x)$ is defined and finite,
$\sum_{i\in J}|f_i(x)|\le g(x)$ for every finite $J\subseteq\Bbb N$, so
$\sum_{i\in\Bbb N}|f_i(x)|$ and $\sum_{i\in\Bbb N}f_i(x)$ are defined.
In this case, of course,
$\sum_{i\in\Bbb N}f_i(x)=\lim_{n\to\infty}\sum_{i=0}^nf_i(x)$. But
$|\sum_{i=0}^nf_i|\leae g$ for each $n$, so Lebesgue's Dominated
Convergence Theorem tells us that
\Centerline{$\int\sum_{i\in\Bbb N}f_i
=\lim_{n\to\infty}\int\sum_{i=0}^nf_i
=\lim_{n\to\infty}\sum_{i=0}^n\int f_i
=\sum_{i\in\Bbb N}\int f_i$.}
}%end of proof of 226E
\exercises{
\leader{226X}{Basic exercises $\pmb{>}$(a)}
%\sqheader 226Xa
Suppose that $I$ and $J$ are sets and that
$\familyiI{a_i}$ is a summable family of real numbers. (i) Show that
if $f:J\to I$ is injective then $\family{j}{J}{a_{f(j)}}$ is summable.
(ii) Show that if $g:I\to J$ is any function, then
$\sum_{j\in J}\sum_{i\in g^{-1}[\{j\}]}a_i$ is defined and equal to
$\sum_{i\in I}a_i$.
%226A
\sqheader 226Xb A {\bf step-function} on an
interval $[a,b]$ is a function $F$
such that, for suitable $t_0,\ldots,t_n$ with $a=t_0\le\ldots\le t_n=b$,
$F$ is constant on each interval $\ooint{t_{i-1},t_i}$. Show that
$F:[a,b]\to\Bbb R$ is a saltus function iff for every $\epsilon>0$ there
is a step-function $G:[a,b]\to\Bbb R$ such that
$\Var_{[a,b]}(F-G)\le\epsilon$.
%226B
\spheader 226Xc Let $F$, $G$ be real-valued functions of bounded
variation defined on an interval $[a,b]\subseteq\Bbb R$. Show that, in
the language of 226C,
\Centerline{$(F+G)_p=F_p+G_p$,\quad $(F+G)_c=F_c+G_c$,}
\Centerline{$(F+G)_{cs}=F_{cs}+G_{cs}$,
\quad$(F+G)_{ac}=F_{ac}+G_{ac}$.}
%226C
\sqheader 226Xd Let $F$ be a real-valued function of bounded
variation on an interval $[a,b]\subseteq\Bbb R$. Show that, in the
language of 226C,
\Centerline{$\Var_{[a,b]}(F)
=\Var_{[a,b]}(F_p)+\Var_{[a,b]}(F_c)
=\Var_{[a,b]}(F_p)+\Var_{[a,b]}(F_{cs})+\Var_{[a,b]}(F_{ac})$.}
%226C
\spheader 226Xe Let $F$ be a real-valued function of bounded
variation on an interval $[a,b]\subseteq\Bbb R$. Show that $F$ is
absolutely continuous iff $\Var_{[a,b]}(F)=\int_a^b|F'|$.
%226Xd
\spheader 226Xf Consider the function $g$ of 134I/226Cc. Show
that $g^{-1}:[0,1]\to[0,1]$ is differentiable almost everywhere in
$[0,1]$, and find $\mu\{x:(g^{-1})'(x)\le a\}$ for each $a\in\Bbb R$.
%226C
\leader{226Y}{Further exercises (a)}
%\spheader 226Ya
Show that a set $I$ is countable iff there is a summable
family $\familyiI{a_i}$ of non-zero real numbers.
%226A
\spheader 226Yb
Explain modifications which might be appropriate in the description
of the Lebesgue decomposition of a function of bounded variation
if we wish to consider functions on open or
half-open intervals, including unbounded intervals.
%226C
\spheader 226Yc Suppose that $F:[a,b]\to\Bbb R$ is a function of bounded
variation, and set $h(y)=\#(F^{-1}[\{y\}])$ for $y\in\Bbb R$. Show
that $\int h=\Var_{[a,b]}(F_c)$, where $F_c$ is the `continuous part'
of $F$ as defined in 226Ca/226Cd.
%226C
\spheader 226Yd Suppose that $a<b$ in $\Bbb R$, and that
$F:[a,b]\to\Bbb R$ is a function of bounded variation; let $F_p$ be its saltus part. Show that
$|F(b)-F(a)|\le\mu F[\,[a,b]\,]+\Var_{[a,b]}F_p$, where $\mu$ is Lebesgue measure on $\Bbb R$.
%226C
}%end of exercises
\endnotes{
\Notesheader{226} In 232I and 232Yb below I will revisit these ideas,
linking them to a decomposition of the Lebesgue-Stieltjes measure
corresponding to a non-decreasing real function, and thence to more
general measures. All this work is peripheral to the main concerns of
this volume, but I think it is illuminating, and certainly it is part of
the basic knowledge assumed of anyone working in real analysis.
}%end of notes
\frnewpage