forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt244.tex
1632 lines (1263 loc) · 61.6 KB
/
mt244.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt244.tex}
\versiondate{6.3.09}
\copyrightdate{1995}
\def\chaptername{Function spaces}
\def\sectionname{$L^{p}$}
\newsection{244}
Continuing with our tour of the classical Banach spaces, we come to
the $L^p$ spaces for $1<p<\infty$. The case $p=2$ is more important
than all the others put together, and it would be reasonable, perhaps
even advisable, to read this section first with this case alone in mind.
But the other spaces provide instructive examples and remain a basic
part of the education of any functional analyst.
\leader{244A}{Definitions}
Let $(X,\Sigma,\mu)$ be any measure space, and $p\in\ooint{1,\infty}$.
Write $\eusm L^p=\eusm L^p(\mu)$ for the set of functions
$f\in\eusm L^0=\eusm L^0(\mu)$ such that $|f|^p$ is integrable,
and $L^p=L^p(\mu)$ for
$\{f^{\ssbullet}:f\in\eusm L^p\}\subseteq L^0=L^0(\mu)$.
\cmmnt{Note that if $f\in\eusm L^p$, $g\in\eusm L^0$ and $f\eae g$,
then $|f|^p\eae|g|^p$ so $|g|^p$ is integrable and $g\in\eusm L^p$;
thus} $\eusm L^p=\{f:f\in\eusm L^0,\,f^{\ssbullet}\in L^p\}$.
\cmmnt{Alternatively, we can define $u^p$ whenever $u\in L^0$,
$u\ge 0$ by writing $(f^{\ssbullet})^p=(f^p)^{\ssbullet}$ for every
$f\in\eusm L^0$ such that $f(x)\ge 0$ for every $x\in\dom f$ (compare
241I), and say that $L^p=\{u:u\in L^0,\,|u|^p\in L^1(\mu)\}$.
}
\leader{244B}{Theorem} Let $(X,\Sigma,\mu)$ be any measure space, and
$p\in[1,\infty]$.
(a) $L^p=L^p(\mu)$ is a linear subspace of $L^0=L^0(\mu)$.
(b) If $u\in L^p$, $v\in L^0$ and $|v|\le |u|$, then $v\in L^p$.
Consequently $|u|$, $u\vee v$ and $u\wedge v$ belong to $L^p$ for all
$u$, $v\in L^p$.
\proof{ The cases $p=1$, $p=\infty$ are covered by 242B, 242C and 243B;
so I suppose that $1<p<\infty$.
\medskip
{\bf (a)(i)} Suppose that $f$, $g\in\eusm L^p=\eusm L^p(\mu)$. If
$a$, $b\in\Bbb R$ then $|a+b|^p\le
2^p\max(|a|^p,|b|^p)$, so $|f+g|^p\leae 2^p(|f|^p\vee|g|^p)$; now
$|f+g|^p\in\eusm L^0$ and
$2^p(|f|^p\vee|g|^p)\in\eusm L^1$ so $|f+g|^p\in\eusm L^1$. Thus
$f+g\in\eusm L^p$ for all $f$, $g\in \eusm L^p$; it follows at once
that $u+v\in L^p$ for all $u$, $v\in L^p$.
\medskip
\quad{\bf (ii)} If $f\in \eusm L^p$ and $c\in\Bbb R$ then
$|cf|^p=|c|^p|f|^p\in\eusm L^1$, so $cf\in\eusm L^p$.
Accordingly $cu\in L^p$ whenever $u\in L^p$ and $c\in\Bbb R$.
\medskip
{\bf (b)(i)} Express $u$ as $f^{\ssbullet}$ and $v$ as $g^{\ssbullet}$,
where $f\in\eusm L^p$ and $g\in\eusm L^0$. Then $|g|\leae|f|$, so
$|g|^p\leae|f|^p$ and $|g|^p$ is integrable; accordingly
$g\in\eusm
L^p$ and $v\in L^p$.
\medskip
\quad{\bf (ii)} Now $|\,|u|\,|=|u|$ so $|u|\in L^p$ whenever $u\in L^p$.
Finally $u\vee v=\bover12(u+v+|u-v|)$ and
$u\wedge v=\bover12(u+v-|u-v|)$
belong to $L^p$ for all $u$, $v\in L^p$.
}
\leader{244C}{The order structure of $L^p$} Let $(X,\Sigma,\mu)$ be any
measure space, and $p\in[1,\infty]$. Then\cmmnt{ 244B is enough to
ensure that} the partial order inherited from $L^0(\mu)$ makes
$L^p(\mu)$ a Riesz space\cmmnt{ (compare 242C, 243C)}.
\leader{244D}{The norm of $L^p$} Let $(X,\Sigma,\mu)$ be a measure
space, and $p\in\ooint{1,\infty}$.
\spheader 244Da For $f\in\eusm L^p=\eusm L^p(\mu)$, set
$\|f\|_p=(\int|f|^p)^{1/p}$.
If $f$, $g\in\eusm L^p$ and $f\eae g$ then
$|f|^p\eae|g|^p$ so $\|f\|_p=\|g\|_p$. Accordingly we may define
$\|\,\|_p:L^p=L^p(\mu)\to\coint{0,\infty}$ by writing
$\|f^{\ssbullet}\|_p=\|f\|_p$ for every $f\in\eusm L^p$.
\cmmnt{Alternatively, we can say just that $\|u\|_p=(\int|u|^p)^{1/p}$
for every $u\in L^p=L^p(\mu)$.}
\spheader 244Db\cmmnt{ The notation $\|\,\|_p$ carries a
promise that it is
a norm on $L^p$; this is indeed so, but I hold the proof over to 244F
below. For the moment, however, let us note just that}
$\|cu\|_p=|c|\|u\|_p$ for
all $u\in L^p$ and $c\in\Bbb R$, and\cmmnt{ that} if $\|u\|_p=0$
then\cmmnt{ $\int|u|^p=0$ so $|u|^p=0$ and} $u=0$.
\spheader 244Dc If $|u|\le |v|$ in $L^p$
then $\|u\|_p\le\|v\|_p$\cmmnt{; this is because $|u|^p\le|v|^p$}.
\leader{244E}{}\cmmnt{ I now work through the lemmas required to show
that $\|\,\|_p$ is a norm on $L^p$ and, eventually, that the normed
space dual of $L^p$ may be identified with a suitable $L^q$.
\medskip
\noindent}{\bf Lemma} Suppose $(X,\Sigma,\mu)$ is a measure space, and
that
$p$, $q\in\ooint{1,\infty}$ are such that ${1\over p}+{1\over q}=1$.
(a) $ab\le{1\over p}a^p+{1\over q}b^q$ for all real $a$, $b\ge 0$.
(b)(i) $f\times g$ is integrable and
\Centerline{$|\int f\times g|\le\int|f\times g|\le\|f\|_p\|g\|_q$}
\noindent for all $f\in \eusm L^p=\eusm L^p(\mu)$,
$g\in\eusm L^q=\eusm L^q(\mu)$;
\quad(ii) $u\times v\in L^1=L^1(\mu)$ and
\Centerline{$|\int u\times v|\le\|u\times v\|_1\le\|u\|_p\|v\|_q$}
\noindent for all $u\in L^p=L^p(\mu)$, $v\in L^q=L^q(\mu)$.
\proof{{\bf (a)} If either $a$ or $b$ is $0$, this is trivial.
If both are non-zero, we may argue as follows. The function
$x\mapsto x^{1/p}:\coint{0,\infty}\to\Bbb R$ is concave, with second
derivative
strictly less than $0$, so lies entirely below any of its tangents; in
particular, below its tangent at the point $(1,1)$, which has equation
$y=1+{1\over p}(x-1)$. Thus we have
\Centerline{$x^{1/p}\le\Bover1px+1-\Bover1p=\Bover1px+\Bover1q$}
\noindent for every $x\in\coint{0,\infty}$. So if $c$, $d>0$, then
\Centerline{$(\Bover{c}{d})^{1/p}\le
\Bover1p\Bover{c}{d}+\Bover1q$;}
\noindent multiplying both sides by $d$,
\Centerline{$c^{1/p}d^{1/q}\le\Bover1pc+\Bover1qd$;}
\noindent setting $c=a^p$ and $d=b^q$, we get
\Centerline{$ab\le\Bover1pa^p+\Bover1qb^q$,}
\noindent as claimed.
\medskip
{\bf (b)(i)}($\alpha$) Suppose first that $\|f\|_p=\|g\|_q=1$.
For every $x\in\dom f\cap\dom g$ we have
\Centerline{$|f(x)g(x)|\le\Bover1p|f(x)|^p+\Bover1q|g(x)|^q$}
\noindent by (a). So
\Centerline{$|f\times g|\leae
\Bover1p|f|^p+\Bover1q|g|^q\in\eusm L^1(\mu)$}
\noindent and $f\times g$ is integrable; also
\Centerline{$\int|f\times g|\le\Bover1p\int|f|^p+\Bover1q\int|g|^q
=\Bover1p\|f\|_p^p+\Bover1q\|g\|_q^q
=\Bover1p+\Bover1q=1$.}
\noindent ($\beta$) If $\|f\|_p=0$, then $\int|f|^p=0$ so
$|f|^p\eae\tbf{0}$, $f\eae\tbf{0}$, $f\times g\eae\tbf{0}$ and
\Centerline{$\int|f\times g|=0=\|f\|_p\|g\|_q$.}
\noindent Similarly, if $\|g\|_q=0$, then $g\eae\tbf{0}$ and again
\Centerline{$\int|f\times g|=0=\|f\|_p\|g\|_q$.}
\noindent($\gamma$) Finally, for general $f\in\eusm L^p$,
$g\in\eusm L^q$ such that $c=\|f\|_p$ and $d=\|g\|_q$ are both non-zero,
we have $\|\bover1cf\|_p=\|\bover1dg\|_q=1$ so
\Centerline{$f\times g=cd(\Bover1cf\times\Bover1dg)$}
\noindent is integrable, and
\Centerline{$\int|f\times g|
=cd\int|\Bover1cf\times\Bover1dg|\le cd$,}
\noindent as required.
\medskip
\quad{\bf (ii)} Now if $u\in L^p$, $v\in L^q$ take $f\in\eusm L^p$,
$g\in \eusm L^q$ such that $u=f^{\ssbullet}$ and $v=g^{\ssbullet}$;
$f\times g$ is integrable, so $u\times v\in L^1$, and
\Centerline{$|\int u\times v|\le\|u\times v\|_1
=\int|f\times g|\le\|f\|_p\|g\|_q=\|u\|_p\|v\|_q$.}
}
\cmmnt{\medskip
\noindent{\bf Remark} Part (b) is `{\bf H\"older's
inequality}'. In the case $p=q=2$ it is `{\bf Cauchy's inequality}'.
}
\leader{244F}{Proposition} Let $(X,\Sigma,\mu)$ be a measure space and
$p\in\ooint{1,\infty}$. Set $q=p/(p-1)$, so that
${1\over p}+{1\over q}=1$.
(a) For every $u\in L^p=L^p(\mu)$,
$\|u\|_p=\max\{\int u\times v:v\in L^q(\mu),\,\|v\|_q\le 1\}$.
(b) $\|\,\|_p$ is a norm on $L^p$.
\proof{{\bf (a)} For $u\in L^p$, set
\Centerline{$\tau(u)
=\sup\{\int u\times v:v\in L^q(\mu),\,\|v\|_q\le 1\}$.}
\noindent By 244E(b-ii), $\|u\|_p\ge\tau(u)$. If
$\|u\|_p=0$ then surely
\Centerline{$0=\|u\|_p=\tau(u)
=\max\{\int u\times v:v\in L^q(\mu),\,\|v\|_q\le 1\}$.}
\noindent If $\|u\|_p=c>0$, consider
\Centerline{$v=c^{-p/q}\sgn u\times|u|^{p/q}$,}
\noindent where for $a\in\Bbb R$ I write $\sgn a=|a|/a$ if $a\ne 0$, $0$
if $a=0$, so that $\sgn:\Bbb R\to\Bbb R$ is a Borel measurable function;
for $f\in\eusm L^0$ I write $(\sgn f)(x)=\sgn(f(x))$ for $x\in\dom f$,
so that $\sgn f\in\eusm L^0$; and for $f\in\eusm L^0$ I write
$\sgn(f^{\ssbullet})=(\sgn f)^{\ssbullet}$ to define a function
$\sgn:L^0\to L^0$ (cf.\ 241I). Then $v\in L^q=L^q(\mu)$ and
\Centerline{$\|v\|_q=(\int|v|^q)^{1/q}=c^{-p/q}(\int|u|^p)^{1/q}
=c^{-p/q}c^{p/q}=1$.}
\noindent So
$$\eqalign{\tau(u)\ge\int u\times v
&=c^{-p/q}\int\sgn u\times|u|\times\sgn u\times|u|^{p/q}\cr
&=c^{-p/q}\int|u|^{1+{p\over q}}
=c^{-p/q}\int|u|^p
=c^{p-{p\over q}}
=c,\cr}$$
\noindent recalling that $1+{p\over q}=p$, $p-{p\over q}=1$.
Thus $\tau(u)\ge\|u\|_p$ and
\Centerline{$\tau(u)=\|u\|_p=\int u\times v$.}
\medskip
{\bf (b)} In view of the remarks in 244Db, I have only to check that
$\|u+v\|_p\le\|u\|_p+\|v\|_p$ for all $u$, $v\in L^p$. But given $u$
and $v$, let $w\in L^q$ be such that $\|w\|_q=1$ and $\int (u+v)\times
w=\|u+v\|_p$. Then
\Centerline{$\|u+v\|_p=\int(u+v)\times w
=\int u\times w+\int v\times w\le\|u\|_p+\|v\|_p$,}
\noindent as required.
}%end of proof of 244F
\cmmnt{\medskip
\noindent{\bf Remark} The triangle
inequality `$\|u+v\|_p\le\|u\|_p+\|v\|_p$'
is {\bf Minkowski's inequality}.}
\leader{244G}{Theorem} Let $(X,\Sigma,\mu)$ be any measure space, and
$p\in[1,\infty]$. Then $L^p=L^p(\mu)$ is a Banach lattice under
its norm $\|\,\|_p$.
\proof{ The cases $p=1$, $p=\infty$ are covered by 242F and 243E,
so let us suppose that $1<p<\infty$. We know already that
$\|u\|_p\le\|v\|_p$ whenever $|u|\le|v|$, so
it remains only to show that $L^p$ is complete.
Let $\sequencen{u_n}$ be a sequence in
$L^p$ such that $\|u_{n+1}-u_n\|_p\le 4^{-n}$ for every $n\in\Bbb N$.
Note that
\Centerline{$\|u_n\|_p\le\|u_0\|_p+\sum_{k=0}^{n-1}\|u_{k+1}-u_k\|_p
\le\|u_0\|_p+\sum_{k=0}^{\infty}4^{-k}\le\|u_0\|_p+2$}
\noindent for every $n$. For each $n\in\Bbb N$, choose
$f_n\in\eusm L^p$ such that $f_0^{\ssbullet}=u_{0}$,
$f_n^{\ssbullet}=u_{n}-u_{n-1}$ for $n\ge 1$; do this in such a way
that $\dom f_n=X$ and $f_n$ is $\Sigma$-measurable (241Bk). Then
$\|f_n\|_p\le 4^{-n+1}$ for $n\ge 1$.
For $m$, $n\in\Bbb N$, set
\Centerline{$E_{mn}=\{x:|f_m(x)|\ge 2^{-n}\}\in\Sigma$.}
\noindent Then $|f_m(x)|^p\ge 2^{-np}$ for $x\in E_{mn}$, so
\Centerline{$2^{-np}\mu E_{mn}\le\int|f_m|^p<\infty$}
\noindent and $\mu E_{mn}<\infty$.
So $\chi E_{mn}\in\eusm L^q=\eusm L^q(\mu)$ and
\Centerline{$\int_{E_{mn}}|f_k|=\int|f_k|\times\chi E_{mn}
\le\|f_k\|_p\|\chi E_{mn}\|_q$}
\noindent for each $k$, by 244E(b-i). Accordingly
\Centerline{$\sum_{k=0}^{\infty}\int_{E_{mn}}|f_k|
\le\|\chi E_{mn}\|_q\sum_{k=0}^{\infty}\|f_k\|_p<\infty$,}
\noindent and $\sum_{k=0}^{\infty}f_k(x)$ exists for
almost every $x\in E_{mn}$, by 242E. This is true for all $m$,
$n\in\Bbb N$. But if
$x\in X\setminus\bigcup_{m,n\in\Bbb N}E_{mn}$, $f_n(x)=0$ for every $n$,
so $\sum_{k=0}^{\infty}f_k(x)$ certainly exists. Thus
$g(x)=\sum_{k=0}^{\infty}f_k(x)$ is defined in $\Bbb R$ for almost every
$x\in X$.
Set $g_n=\sum_{k=0}^nf_k$; then $g_n^{\ssbullet}=u_{n}\in L^p$ for each
$n$, and $g(x)=\lim_{n\to\infty}g_n(x)$ is defined for almost every $x$.
Now consider $|g|^p\eae\lim_{n\to\infty}|g_n|^p$. We know that
\Centerline{$\liminf_{n\to\infty}\int|g_n|^p
=\liminf_{n\to\infty}\|u_{n}\|_p^p\le(2+\|u_{0}\|_p)^p<\infty$,}
\noindent so by Fatou's Lemma
\Centerline{$\int|g|^p\le\liminf_{k\to\infty}\int|g_k|^p<\infty$.}
\noindent Thus $u=g^{\ssbullet}\in L^p$. Moreover, for any $m\in\Bbb
N$,
$$\eqalign{\int|g-g_m|^p
&\le\liminf_{n\to\infty}\int|g_n-g_m|^p
=\liminf_{n\to\infty}\|u_{n}-u_{m}\|_p^p\cr
&\le\liminf_{n\to\infty}\sum_{k=m}^{n-1}4^{-kp}
=\sum_{k=m}^{\infty}4^{-kp}
=4^{-mp}/(1-4^{-p}).\cr}$$
\noindent So
\Centerline{$\|u-u_{m}\|_p=(\int|g-g_m|^p)^{1/p}
\le 4^{-m}/(1-4^{-p})^{1/p}\to 0$}
\noindent as $m\to\infty$. Thus $u=\lim_{m\to\infty}u_m$ in $L^p$.
As $\sequencen{u_n}$ is arbitrary, $L^p$ is complete.
}
\leader{244H}{}\cmmnt{ Following 242M and 242O, I note that $L^p$
behaves like $L^1$ in respect of certain dense subspaces.
\medskip
\noindent}{\bf Proposition} (a) Let $(X,\Sigma,\mu)$ be any measure
space, and $p\in\coint{1,\infty}$.
Then the space $S$ of equivalence classes of
$\mu$-simple functions is a dense linear subspace of $L^p=L^p(\mu)$.
(b) Let $X$ be any subset of $\BbbR^r$, where $r\ge 1$, and let
$\mu$ be the subspace measure on $X$
induced by Lebesgue measure on $\BbbR^r$. Write $C_k$ for the
set of (bounded) continuous functions $g:\BbbR^r\to\Bbb R$
such that $\{x:g(x)\ne 0\}$ is bounded, and $S_0$ for the space
of linear combinations of functions of the form $\chi I$, where
$I\subseteq\BbbR^r$ is a bounded half-open interval. Then
$\{(g\restr X)^{\ssbullet}:g\in C_k\}$ and
$\{(h\restr X)^{\ssbullet}:h\in S_0\}$ are dense in
$L^p(\mu)$.
\proof{{\bf (a)} I repeat the argument of 242M with a tiny modification.
\medskip
\quad{\bf (i)} Suppose that $u\in L^p(\mu)$, $u\ge 0$ and
$\epsilon>0$. Express $u$ as $f^{\ssbullet}$ where
$f:X\to\coint{0,\infty}$ is a measurable function. Let $g:X\to\Bbb R$
be a simple function such that $0\le g\le f^p$ and
$\int g\ge\int f^p-\epsilon^p$. Set $h=g^{1/p}$.
Then $h$ is a simple function and $h\le f$. Because $p>1$,
$(f-h)^p+h^p\le f^p$ and
\Centerline{$\int(f-h)^p\le \int f^p-g\le\epsilon^p$,}
\noindent so
\Centerline{$\|u-h^{\ssbullet}\|_p
=(\int|f-h|^p)^{1/p}\le\epsilon$,}
\noindent while $h^{\ssbullet}\in S$.
\medskip
\quad{\bf (ii)} For general $u\in L^p$, $\epsilon>0$, $u$ can be
expressed as
$u^+-u^-$ where $u^+=u\vee 0$, $u^-=(-u)\vee 0$ belong to $L^p$ and are
non-negative. By (i), we can find $v_1$, $v_2\in S$ such that
$\|u^+-v_1\|_p\le\bover12\epsilon$ and $\|u^--v_2\|_p\le\bover12\epsilon$,
so that $v=v_1-v_2\in S$ and $\|u-v\|_p\le\epsilon$. As $u$ and
$\epsilon$ are arbitrary, $S$ is dense.
\medskip
{\bf (b)} Again, all the ideas are to be found in 242O; the changes
needed are in the formulae, not in the method. They will go more
easily if I note at the outset that whenever $f_1$,
$f_2\in\eusm L^p(\mu)$ and
$\int|f_1|^p\le\epsilon^p$, $\int|f_2|^p\le\delta^p$ (where $\epsilon$,
$\delta\ge 0$), then $\int|f_1+f_2|^p\le(\epsilon+\delta)^p$; this is
just the triangle inequality for $\|\,\|_p$ (244Fb). Also I will
regularly express the target relationships in the form
`$\int_X|f-g|^p\le\epsilon^p$', `$\int_X|f-g|^p\le\epsilon^p$'.
Now let me run
through the argument of 242Oa, rather more briskly than before.
\medskip
\quad{\bf (i)} Suppose first that $f=\chi I\restr X$ where
$I\subseteq\BbbR^r$ is a bounded half-open interval.
As before, we can set $h=\chi I$ and get $\int_X|f-h|^p=0$.
This time, use the same construction to find an interval $J$ and a
function $g\in C_k$ such
that $\chi I\le g\le \chi J$ and $\mu_r(J\setminus I)\le\epsilon^p$;
this will ensure that $\int_X|f-g|^p\le\epsilon^p$.
\medskip
\quad{\bf (ii)} Now suppose that $f=\chi(X\cap E)$ where
$E\subseteq\BbbR^r$ is a
set of finite measure. Then, for the same reasons as before, there is
a disjoint family
$I_0,\ldots,I_n$ of half-open intervals such that
$\mu_r(E\symmdiff\bigcup_{j\le n}I_j)\le(\bover12\epsilon)^p$.
Accordingly $h=\sum_{j=0}^n\chi I_j\in S_0$ and
$\int_X|f-h|^p\le(\bover12\epsilon)^p$.
And (i) tells us that there is for each
$j\le n$ a $g_j\in C_k$ such that
$\int_X|g_j-\chi I_j|^p\le(\epsilon/2(n+1))^p$, so that
$g=\sum_{j=0}^ng_j\in C_k$ and $\int_X|f-g|^p\le\epsilon^p$.
\medskip
\quad{\bf (iii)} The move to simple functions, and thence to arbitrary
members of $\eusm L^p(\mu)$, is just as before, but using $\|f\|_p$ in
place of $\int_X|f|$. Finally, the translation from $\eusm L^p$ to
$L^p$ is again direct -- remembering, as before, to check that
$g\restr X$, $h\restr X$ belong to $\eusm L^p(\mu)$ whenever
$g\in C_k$ and $h\in S_0$.
}%end of proof of 244H
\leader{*244I}{Corollary} In the context of 244Hb, $L^p(\mu)$ is
separable.
\proof{ Let $A$ be the set
\Centerline{$\{(\sum_{j=0}^nq_j\chi(\coint{a_j,b_j}\cap X))^{\ssbullet}:
n\in\Bbb N$, $q_0,\ldots,q_n\in\Bbb Q$,
$a_0,\ldots,a_n,b_0,\ldots,b_n\in\BbbQ^r\}$.}
\noindent Then $A$ is a countable subset of $L^p(\mu)$, and its closure
must contain
$(\sum_{j=0}^nc_j\chi(\coint{a_j,b_j}\cap X))^{\ssbullet}$ whenever
$c_0,\ldots,c_n\in\Bbb R$ and
$a_0,\ldots,a_n,b_0,\ldots,b_n\in\BbbR^r$; that is, $\overline A$ is
a closed set including $\{(h\restr X)^{\ssbullet}:h\in S_0\}$, and is
the whole of $L^p(\mu)$, by 244Hb.
}%end of proof of 244I
\leader{244J}{Duality in $L^p$ spaces} Let $(X,\Sigma,\mu)$ be any
measure space, and $p\in\ooint{1,\infty}$.
Set $q=p/(p-1)$\cmmnt{; note that ${1\over p}+{1\over q}=1$ and that
$p=q/(q-1)$; the relation between $p$ and $q$ is symmetric}. Now
$u\times v\in L^1(\mu)$ and $\|u\times v\|_1\le\|u\|_p\|v\|_q$ whenever
$u\in L^p=L^p(\mu)$ and $v\in L^q=L^q(\mu)$\cmmnt{ (244E)}.
Consequently we have a bounded linear operator $T$ from $L^q$
to the normed space dual $(L^p)^*$ of $L^p$, given by writing
\Centerline{$(Tv)(u)=\int u\times v$}
\noindent for all $u\in L^p$ and $v\in L^q$\cmmnt{, exactly as in
243F}.
\leader{244K}{Theorem} Let $(X,\Sigma,\mu)$ be a measure space, and
$p\in\ooint{1,\infty}$; set $q=p/(p-1)$. Then the canonical map
$T:L^q(\mu)\to L^p(\mu)^*$\cmmnt{, described in 244J,} is a normed
space isomorphism.
\cmmnt{\medskip
\noindent{\bf Remark} I should perhaps remind anyone who is reading this
section to learn about $L^2$ that the basic theory of Hilbert spaces
yields this theorem in the case $p=q=2$ without any need for the more
generally applicable argument given below (see 244N, 244Yk).
}%end of comment
\proof{ We know that $T$ is a bounded linear operator of
norm at most $1$; I need to show (i) that $T$ is actually an isometry
(that is, that $\|Tv\|=\|v\|_q$ for every $v\in L^q$), which will show
incidentally that $T$ is injective (ii) that $T$ is surjective, which is
the really substantial part of the theorem.
\medskip
{\bf (a)} If $v\in L^q$, then by 244Fa
(recalling that $p=q/(q-1)$) there
is a $u\in L^p$ such that $\|u\|_p\le 1$ and $\int u\times v=\|v\|_q$;
thus $\|Tv\|\ge (Tv)(u)=\|v\|_q$. As we know already that
$\|Tv\|\le\|v\|_q$, we have $\|Tv\|=\|v\|_q$ for every $v$, and $T$ is
an isometry.
\medskip
{\bf (b)} The rest of the proof, therefore, will be devoted to showing
that $T:L^q\to(L^p)^*$ is surjective. Fix $h\in (L^p)^*$ with
$\|h\|=1$.
I need to show that $h$ `lives on' a countable union of sets of
finite measure in $X$, in the following sense: there is a
non-decreasing
sequence $\sequencen{E_n}$ of sets of finite measure such that
$h(f^{\ssbullet})=0$ whenever $f\in\eusm L^p$ and $f(x)=0$ for
$x\in\bigcup_{n\in\Bbb N}E_n$. \Prf\ Choose a sequence
$\sequencen{u_n}$ in $L^p$ such that $\|u_n\|_p\le 1$ for every $n$ and
$\lim_{n\to\infty}h(u_n)=\|h\|=1$.
For each $n$, express $u_n$ as $f_n^{\ssbullet}$, where $f_n:X\to\Bbb R$
is a measurable function. Set
\Centerline{$E_n=\{x:\sum_{k=0}^n|f_k(x)|^p\ge 2^{-n}\}$}
\noindent for $n\in \Bbb N$; because $|f_k|^p$ is measurable and
integrable and has domain $X$ for every $k$, $E_n\in \Sigma$ and $\mu
E_n<\infty$ for each $n$.
Now suppose that $f\in\eusm L^p(X)$ and that $f(x)=0$ for
$x\in\bigcup_{n\in\Bbb N}E_n$; set $u=f^{\ssbullet}\in L^p$. \Quer\
Suppose, if possible, that $h(u)\ne 0$, and consider $h(cu)$, where
\Centerline{$\sgn c=\sgn h(u)$,\quad
$0<|c|<(p\,|h(u)|\,\|u\|_p^{-p})^{1/(p-1)}$.}
\noindent (Of course $\|u\|_p\ne 0$ if $h(u)\ne 0$.) For each $n$, we
have
\Centerline{$\{x:f_n(x)\ne 0\}\subseteq\bigcup_{m\in\Bbb
N}E_m\subseteq\{x:f(x)=0\}$,}
\noindent so $|f_n+cf|^p=|f_n|^p+|cf|^p$ and
\Centerline{$h(u_n+cu)\le\|u_n+cu\|_p=(\|u_n\|_p^p+\|cu\|_p^p)^{1/p}
\le(1+|c|^p\|u\|_p^p)^{1/p}$.}
\noindent Letting $n\to\infty$,
\Centerline{$1+ch(u)\le(1+|c|^p\|u\|_p^p)^{1/p}$.}
\noindent
Because $\sgn c=\sgn h(u)$, $ch(u)=|c||h(u)|$ and we have
\Centerline{$1+p|c||h(u)|\le(1+ch(u))^p\le 1+|c|^p\|u\|_p^p$,}
\noindent so that
\Centerline{$p|h(u)|\le |c|^{p-1}\|u\|_p^p<p|h(u)|$}
\noindent by the choice of $c$; which is impossible.\ \Bang
This means that $h(f^{\ssbullet})=0$ whenever $f:X\to\Bbb R$ is
measurable, belongs to $\eusm L^q$, and is zero on $\bigcup_{n\in\Bbb
N}E_n$.\ \Qed
\medskip
{\bf (c)} Set $H_n=E_n\setminus\bigcup_{k<n}E_k$ for each $n\in\Bbb N$;
then $\sequencen{H_n}$ is a disjoint sequence of sets of finite measure.
Now $h(u)=\sum_{n=0}^{\infty}h(u\times(\chi H_n)^{\ssbullet})$ for every
$u\in L^p$. \Prf\ Express $u$ as $f^{\ssbullet}$, where $f:X\to\Bbb R$
is measurable. Set $f_n=f\times\chi H_n$ for each $n$,
$g=f\times\chi(X\setminus\bigcup_{n\in\Bbb N}H_n)$; then
$h(g^{\ssbullet})=0$, by (a), because $\bigcup_{n\in\Bbb
N}H_n=\bigcup_{n\in\Bbb N}E_n$. Consider
\Centerline{$g_n=g+\sum_{k=0}^nf_k\in \eusm L^p$}
\noindent for each $n$. Then $\lim_{n\to\infty}f-g_n=\tbf{0}$, and
\Centerline{$|f-g_n|^p\le|f|^p\in\eusm L^1$}
\noindent for every $n$, so by either Fatou's Lemma
or Lebesgue's Dominated Convergence Theorem
\Centerline{$\lim_{n\to\infty}\int|f-g_n|^p=0$,}
\noindent and
$$\eqalign{\lim_{n\to\infty}\|u-g^{\ssbullet}-\sum_{k=0}^nu\times(\chi
H_k)^{\ssbullet}\|_p
&=\lim_{n\to\infty}\|u-g_n^{\ssbullet}\|_p\cr
&=\lim_{n\to\infty}\bigl(\int|f-g_n|^p\bigr)^{1/p}
=0,\cr}$$
\noindent that is,
\Centerline{$u
=g^{\ssbullet}+\sum_{k=0}^{\infty}u\times\chi H_k^{\ssbullet}$}
\noindent in $L^p$. Because $h:L^p\to\Bbb R$ is linear and
continuous, it follows that
\Centerline{$h(u)
=h(g^{\ssbullet})+\sum_{k=0}^{\infty}h(u\times\chi H_k^{\ssbullet})
=\sum_{k=0}^{\infty}h(u\times\chi H_k^{\ssbullet})$,}
\noindent as claimed.\ \Qed
\medskip
{\bf (d)} For each $n\in\Bbb N$, define $\nu_n:\Sigma\to\Bbb R$ by
setting
\Centerline{$\nu_nF=h(\chi(F\cap H_n)^{\ssbullet})$}
\noindent for every $F\in\Sigma$. (Note that $\nu_nF$ is always
defined because $\mu(F\cap H_n)<\infty$, so that
\Centerline{$\|\chi(F\cap H_n)\|_p=\mu(F\cap H_n)^{1/p}<\infty$.)}
\noindent Then $\nu_n\emptyset=h(0)=0$,
and if $\sequence{k}{F_k}$ is a disjoint sequence in $\Sigma$,
\Centerline{$\|\chi(\bigcup_{k\in\Bbb N}H_n\cap F_k)
-\sum_{k=0}^m\chi(H_n\cap F_k)\|_p
=\mu(H_n\cap\bigcup_{k=m+1}^{\infty}F_k)^{1/p}\to 0$}
\noindent as $m\to\infty$, so
\Centerline{$\nu_n(\bigcup_{k\in\Bbb N}F_k)
=\sum_{k=0}^{\infty}\nu_nF_k$.}
\noindent So $\nu_n$ is countably additive.
Further, $|\nu_nF|\le\mu(H_n\cap F)^{1/p}$ for every $F\in\Sigma$,
so $\nu_n$ is truly continuous in the sense of 232Ab.
There is therefore an integrable function $g_n$ such that
$\nu_nF=\int_Fg_n$ for every $F\in\Sigma$; let us suppose that
$g_n$ is measurable and defined on the whole of $X$. Set
$g(x)=g_n(x)$ whenever $n\in\Bbb N$ and $x\in H_n$,
$g(x)=0$ for $x\in X\setminus\bigcup_{n\in\Bbb N}H_n$.
\medskip
{\bf (e)} $g=\sum_{n=0}^{\infty}g_n\times\chi H_n$ is measurable
and has the property that
$\int_Fg=h(\chi F^{\ssbullet})$
whenever $n\in\Bbb N$ and $F$ is a measurable subset of $H_n$;
consequently $\int_Fg=h(\chi F^{\ssbullet})$ whenever $n\in\Bbb N$
and $F$ is a measurable subset of $E_n=\bigcup_{k\le n}H_k$. Set
$G=\{x:g(x)>0\}\subseteq\bigcup_{n\in\Bbb N}E_n$. If $F\subseteq G$
and $\mu F<\infty$, then
\Centerline{$\lim_{n\to\infty}\int g\times\chi(F\cap E_n)
\le\sup_{n\in\Bbb N}h(\chi(F\cap E_n)^{\ssbullet})
\le\sup_{n\in\Bbb N}\|\chi(F\cap E_n)\|_p
=(\mu F)^{1/p}$,}
\noindent so by B.Levi's theorem
\Centerline{$\int_Fg=\int g\times\chi F
=\lim_{n\to\infty}\int g\times\chi(F\cap E_n)$}
\noindent exists. Similarly, $\int_Fg$ exists if
$F\subseteq\{x:g(x)<0\}$ has finite measure; while obviously
$\int_Fg$ exists if $F\subseteq\{x:g(x)=0\}$.
Accordingly $\int_Fg$ exists for every set $F$ of finite measure.
Moreover, by Lebesgue's Dominated Convergence Theorem,
\Centerline{$\int_Fg=\lim_{n\to\infty}\int_{F\cap E_n}g
=\lim_{n\to\infty}h(\chi(F\cap E_n)^{\ssbullet})
=\sum_{n=0}^{\infty}h(\chi(F\cap H_n)^{\ssbullet})
=h(\chi F^{\ssbullet})$}
\noindent for such $F$, by (c) above.
It follows at once that
\Centerline{$\int g\times f=h(f^{\ssbullet})$}
\noindent for every simple function $f:X\to\Bbb R$.
\medskip
{\bf (f)} Now $g\in L^q$. \Prf\ (i) We already know
that $|g|^q:X\to\Bbb R$ is measurable, because $g$ is
measurable and $a\mapsto|a|^q$ is continuous. (ii) Suppose that
$f$ is a non-negative simple function and $f\leae|g|^q$. Then
$f^{1/p}$ is a simple function, and $\sgn g$ is measurable and
takes only the values $0$, $1$ and $-1$, so
$f_1=f^{1/p}\times\sgn g$ is simple. We see that $\int|f_1|^p=\int f$,
so $\|f_1\|_p=(\int f)^{1/p}$. Accordingly
$$\eqalignno{(\int f)^{1/p}&\ge h(f_1^{\ssbullet})
=\int g\times f_1=\int|g\times f^{1/p}|\cr
&\ge\int f^{1/q}\times f^{1/p}\cr
\noalign{\noindent (because $0\le f^{1/q}\leae|g|$)}
&=\int f,\cr}$$
\noindent and we must have $\int f\le 1$. (iii) Thus
\Centerline{$\sup\{\int f: f$ is a non-negative simple function,
$f\leae |g|^q\}\le 1<\infty$.}
\noindent But now observe that if $\epsilon>0$ then
\Centerline{$\{x:|g(x)|^q\ge\epsilon\}
=\bigcup_{n\in\Bbb N}\{x:x\in E_n,\,|g(x)|^q\ge\epsilon\}$,}
\noindent and for each $n\in\Bbb N$
\Centerline{$\mu\{x:x\in E_n,\,|g(x)|^q\ge\epsilon\}
\le{1\over{\epsilon}}$,}
\noindent because $f=\epsilon\chi\{x:x\in E_n,\,|g(x)|^q\ge\epsilon\}$
is a simple function less than or equal to
$|g|^q$, so has integral at most $1$. Accordingly
\Centerline{$\mu\{x:|g(x)|^q\ge\epsilon\}
=\sup_{n\in\Bbb N}\mu\{x:x\in E_n,\,|g(x)|^q\ge\epsilon\}
\le{1\over{\epsilon}}<\infty$.}
\noindent Thus $|g|^q$ is integrable, by the criterion in 122Ja.\ \Qed
\medskip
{\bf (g)} We may therefore speak of
$h_1=T(g^{\ssbullet})\in (L^p)^*$, and we know that it agrees with $h$
on members of $L^p$ of the
form $f^{\ssbullet}$ where $f$ is a simple function. But these form a
dense subset of $L^p$, by 244Ha, and both $h$ and $h_1$ are continuous,
so $h=h_1$, by 2A3Uc, and $h$ is a value of $T$.
The argument as written so
far has assumed that $\|h\|=1$. But of course any
non-zero member of $(L^p)^*$ is a scalar multiple of an element of norm
$1$, so is a value of $T$. So $T:L^q\to(L^p)^*$ is indeed surjective,
and is therefore an isometric isomorphism, as claimed.
}%end of proof of 244K
\vleader{48pt}{244L}{}\cmmnt{ Continuing with the same topics as in
\S\S242 and 243, I turn to the order-completeness of $L^p$.
\medskip
\noindent}{\bf Theorem} Let $(X,\Sigma,\mu)$ be any measure space, and
$p\in\coint{1,\infty}$. Then $L^p=L^p(\mu)$ is Dedekind complete.
\proof{ I use 242H. Let $A\subseteq L^p$ be a non-empty set
which is bounded above in $L^p$. Fix $u_0\in A$ and set
\Centerline{$A'=\{u_0\vee u:u\in A\}$,}
\noindent so that $A'$ has the same upper bounds as $A$ and is bounded
below by $u_0$. Fixing an upper bound $w_0$ of $A$ in $L^p$, then
$u_0\le u\le w_0$ for every $u\in A'$. Set
\Centerline{$B=\{(u-u_0)^p:u\in A'\}$.}
\noindent Then
\Centerline{$0\le v\le(w_0-u_0)^p\in L^1=L^1(\mu)$}
\noindent for every $v\in B$, so $B$ is a non-empty subset of $L^1$
which is bounded above in $L^1$, and therefore has a least upper bound
$v_1$ in $L^1$. Now $v_1^{1/p}\in L^p$; consider $w_1=u_0+v_1^{1/p}$.
If $u\in A'$ then $(u-u_0)^p\le v_1$ so $u-u_0\le v_1^{1/p}$ and $u\le
w_1$; thus $w_1$ is an upper bound for $A'$. If $w\in L^p$ is an
upper bound for $A'$, then $u-u_0\le w-u_0$ and $(u-u_0)^p\le(w-u_0)^p$
for every $u\in A'$, so $(w-u_0)^p$ is an upper bound for $B$ and
$v_1\le(w-u_0)^p$, $v_1^{1/p}\le w-u_0$ and $w_1\le w$. Thus $w=\sup
A'=\sup A$ in $L^p$. As $A$ is arbitrary, $L^p$ is Dedekind complete.
}%end of proof of 244L
\leader{244M}{}\cmmnt{ As in the last two sections, the theory of
conditional expectations is worth revisiting.
\medskip
\noindent}{\bf Theorem} Let $(X,\Sigma,\mu)$ be a probability space, and
$\Tau$ a $\sigma$-subalgebra of $\Sigma$. Take $p\in[1,\infty]$.
Regard $L^0(\mu\restrp\Tau)$
as a subspace of $L^0=L^0(\mu)$\cmmnt{, as in 242Jh},
so that $L^p(\mu\restrp\Tau)$ becomes
$L^p(\mu)\cap L^0(\mu\restrp\Tau)$. Let
$P:L^1(\mu)\to L^1(\mu\restrp\Tau)$ be the conditional expectation
operator\cmmnt{, as described in 242Jd}. Then whenever
$u\in L^p=L^p(\mu)$,
$|Pu|^p\le P(|u|^p)$, so $Pu\in L^p(\mu\restrp\Tau)$ and
$\|Pu\|_p\le\|u\|_p$. Moreover, $P[L^p]=L^p(\mu\restrp\Tau)$.
\proof{ For $p=\infty$, this is 243Jb, so I assume henceforth that
$p<\infty$. Concerning the identification of $L^p(\mu\restrp\Tau)$ with
$L^p\cap L^0(\mu\restrp\Tau)$, if $S:L^0(\mu\restrp\Tau)\to L^0$ is the
canonical embedding described in 242J, we have $|Su|^p=S(|u|^p)$ for every
$u\in L^0(\mu\restrp\Tau)$, so that $Su\in L^p$ iff
$|u|^p\in L^1(\mu\restrp\Tau)$ iff $u\in L^p(\mu\restrp\Tau)$.
Set $\phi(t)=|t|^p$ for $t\in\Bbb R$; then $\phi$ is a
convex function (because it is absolutely continuous on any bounded
interval, and its derivative is non-decreasing), and $|u|^p=\bar\phi(u)$
for every
$u\in L^0=L^0(\mu)$, where $\bar\phi$ is defined as in 241I. Now
if $u\in L^p=L^p(\mu)$, we surely have $u\in L^1$ (because
$|u|\le|u|^p\vee(\chi X)^{\ssbullet}$, or otherwise); so 242K tells us
that $|Pu|^p\le P|u|^p$. But this means that
$Pu\in L^p\cap L^1(\mu\restrp\Tau)=L^p(\mu\restrp\Tau)$, and
\Centerline{$\|Pu\|_p=(\int|Pu|^p)^{1/p}\le(\int P|u|^p)^{1/p}
=(\int|u|^p)^{1/p}=\|u\|_p$,}
\noindent as claimed. If $u\in L^p(\mu\restrp\Tau)$, then
$Pu=u$, so $P[L^p]$ is the whole of $L^p(\mu\restrp\Tau)$.
}%end of proof of 244M
\leader{244N}{The space $L^2$ (a)}\cmmnt{ As I have already remarked,
the really
important function spaces are $L^0$, $L^1$, $L^2$ and $L^{\infty}$.}
$L^2$ has the special property of being an inner product space; if
$(X,\Sigma,\mu)$ is any measure space and $u$, $v\in L^2=L^2(\mu)$ then
$u\times v\in L^1(\mu)$\cmmnt{, by 244Eb}, and we may write
$\innerprod{u}{v}=\int u\times v$.
This makes $L^2$ a real inner product space\prooflet{ (because
\Centerline{$\innerprod{u_1+u_2}{v}
=\innerprod{u_1}{v}+\innerprod{u_2}{v}$,
\quad
$\innerprod{cu}{v}=c\innerprod{u}{v}$,
\quad
$\innerprod{u}{v}=\innerprod{v}{u}$,}
\Centerline{$\innerprod{u}{u}\ge 0$,
\quad $u=0$ whenever $\innerprod{u}{u}=0$}
\noindent for all $u$, $u_1$, $u_2$, $v\in L^2$ and $c\in\Bbb R$)} and
its norm $\|\,\|_2$ is the associated norm\cmmnt{ (because
$\|u\|_2=\sqrt{\innerprod{u}{u}}$
whenever $u\in L^2$)}. \cmmnt{Because} $L^2$\cmmnt{ is complete
(244G), it} is
a real Hilbert space. \cmmnt{The fact that it may be identified with
its own dual (244K) can of course be deduced from this.}
I will use the phrase `{\bf square-integrable}' to describe functions
in $\eusm L^2(\mu)$.
\spheader 244Nb \cmmnt{Conditional expectations take a special form in
the case of $L^2$.} Let $(X,\Sigma,\mu)$ be a probability space,
$\Tau$ a $\sigma$-subalgebra of $\Sigma$, and
$P:L^1=L^1(\mu)\to L^1(\mu\restrp\Tau)\subseteq L^1$ the corresponding
conditional expectation operator. Then $P[L^2]\subseteq L^2$, where
$L^2=L^2(\mu)$\cmmnt{ (244M)}, so we have an operator
$P_2=P\restr L^2$
from $L^2$ to itself. Now $P_2$ is an orthogonal projection and its
kernel is $\{u:u\in L^2,\,\int_Fu=0$ for every $F\in\Tau\}$.
\prooflet{\Prf\ (i) If $u\in L^1$ then $Pu=0$ iff $\int_Fu=0$ for every
$F\in\Tau$ (cf.\ 242Je); so surely the kernel of $P_2$ is the set
described. (ii) Since $P^2=P$, $P_2$ also is a projection; because
$P_2$ has norm at most $1$ (244M), and is therefore continuous,
\Centerline{$U=P_2[L^2]=L^2(\mu\restrp\Tau)
=\{u:u\in L^2,\,P_2u=u\}$,\quad$V=\{u:P_2u=0\}$}
\noindent are closed linear subspaces of $L^2$ such that
$U\oplus V=L^2$.
(iii) Now suppose that $u\in U$ and $v\in V$. Then $P|v|\in L^2$, so
$u\times P|v|\in L^1$ and $P(u\times v)=u\times Pv$, by 242L.
Accordingly
\Centerline{$\innerprod{u}{v}=\int u\times v
=\int P(u\times v)=\int u\times Pv=0$.}
\noindent Thus $U$ and $V$ are orthogonal subspaces of $L^2$, which is
what we mean by saying that $P_2$ is an orthogonal projection. (Some
readers will know that every projection of norm at most $1$ on an inner
product space is orthogonal.)\ \Qed
}%end of prooflet
\leader{*244O}{}\dvAnew{2009}\cmmnt{ This is not the place for a detailed
discussion
of the geometry of $L^p$ spaces. However there is a particularly
important fact about the shape of the unit ball which is
accessible by the methods available to us here.
\medskip
\noindent}{\bf Theorem}\cmmnt{ ({\smc Clarkson 36})}
Suppose that $p\in\ooint{1,\infty}$ and $(X,\Sigma,\mu)$ is a
measure space. Then $L^p=L^p(\mu)$ is uniformly
convex\cmmnt{ (definition: 2A4K)}.
\proof{({\smc Hanner 56}, {\smc Naor 04})
\medskip
{\bf (a)(i)} For $0<t\le 1$ and $a$, $b\in\Bbb R$, set
\Centerline{$\phi_0(t)=(1+t)^{p-1}+(1-t)^{p-1}$,}
\Centerline{$\phi_1(t)=\Bover{(1+t)^{p-1}-(1-t)^{p-1}}{t^{p-1}}
=(\Bover1t+1)^{p-1}-(\Bover1t-1)^{p-1}$,}
\Centerline{$\psi_{ab}(t)=|a|^p\phi_0(t)+|b|^p\phi_1(t)$,}
\Centerline{$\phi_2(b)=(1+b)^p+|1-b|^p$.}
\medskip
\quad{\bf (ii)} We have
$$\eqalignno{\phi_0'(t)
&=(p-1)((1+t)^{p-2}-(1-t)^{p-2}),\text{ which has the same sign as }p-2,\cr
\noalign{\noindent (of course it is zero if $p=2$),}
\phi_1'(t)
&=-\Bover{p-1}{t^2}((\Bover1t-1)^{p-2}-(\Bover1t-1)^{p-2})\cr
&=-\Bover{p-1}{t^p}((1+t)^{p-2}-(1-t)^{p-2})
=-\Bover1{t^p}\phi_0'(t)\cr}$$
\noindent for every $t\in\ooint{0,1}$. Accordingly $\phi_0'-\phi_1'$ has the
same sign as $p-2$ everywhere on $\ooint{0,1}$. Also
\Centerline{$\phi_0(1)=2^{p-1}=\phi_1(1)$,}
\noindent so $\phi_0-\phi_1$ has the same sign as $2-p$ everywhere on
$\ocint{0,1}$.
\medskip
\quad{\bf (iii)} $\phi_2$ is strictly increasing on $\coint{0,\infty}$.
\Prf\ For $b>0$,
$$\eqalign{\phi_2'(b)
&=p((1+b)^{p-1}-(1-b)^{p-1})>0\text{ if }b\le 1,\cr
&=p((1+b)^{p-1}+(b-1)^{p-1})>0\text{ if }b\ge 1. \text{ \Qed}\cr}$$
\medskip
\quad{\bf (iv)} If $0<b\le a$, then
$$\eqalignno{\psi_{ab}(\Bover{b}{a})
&=a^p\phi_0(\Bover{b}{a})+b^p\phi_1(\Bover{b}{a})\cr
&=a^p(1+\Bover{b}{a})^{p-1}+a^p(1-\Bover{b}{a})^{p-1}
+b^p(\Bover{a}{b}+1)^{p-1}-b^p(\Bover{a}{b}-1)^{p-1}\cr
&=a(a+b)^{p-1}+a(a-b)^{p-1}+b(a+b)^{p-1}-b(a-b)^{p-1}\cr
&=(a+b)^p+(a-b)^p
=(a+b)^p+|a-b|^p.&(\dagger)\cr}$$
\noindent Also $\psi_{ab}'(t)=(a^p-\Bover{b^p}{t^p})\phi_0'(t)$ has the
sign of $2-p$ if $0<t<\Bover{b}{a}$ and the sign of $p-2$ if
$\Bover{b}{a}<t<1$. Accordingly
\inset{----- if $1<p\le 2$,
$\psi_{ab}(t)\le\psi_{ab}(\Bover{b}{a})=(a+b)^p+|a-b|^p$ for every
$t\in\ocint{0,1}$,
----- if $p\ge 2$,
$\psi_{ab}(t)\ge\psi_{ab}(\Bover{b}{a})=(a+b)^p+|a-b|^p$ for every
$t\in\ocint{0,1}$.}
\medskip
\quad{\bf (v)} Now consider the case $0<a\le b$. If $1<p\le 2$,
$$\eqalignno{\psi_{ab}(t)
&=a^p\phi_0(t)+b^p\phi_1(t)
\le a^p\phi_0(t)+b^p\phi_1(t)+(b^p-a^p)(\phi_0(t)-\phi_1(t))\cr
\displaycause{by (ii)}
&=b^p\phi_0(t)+a^p\phi_1(t)
\le(b+a)^p+(b-a)^p
=(a+b)^p+|a-b|^p\cr}$$
\noindent for every $t\in\ocint{0,1}$. If $p\ge 2$, on the other hand,
$$\eqalignno{\psi_{ab}(t)
&=a^p\phi_0(t)+b^p\phi_1(t)
\ge a^p\phi_0(t)+b^p\phi_1(t)+(b^p-a^p)(\phi_0(t)-\phi_1(t))\cr
&=b^p\phi_0(t)+a^p\phi_1(t)
\ge(a+b)^p+|a-b|^p\cr}$$
\noindent for every $t$.
\medskip
\quad{\bf (vi)} Thus we have the inequalities
$$\eqalign{\psi_{ab}(t)
&\le|a+b|^p+|a-b|^p\text{ if }p\in\ocint{1,2},\cr